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Preface to the 
Second Edition 

The objectives of the first edition of "An Introduction to Environmental 
Biophysics" were "to describe the physical microenvironment in which 
living organisms reside" and "to present a simplified discussion of heat 
and mass transfer models and apply them to exchange processes between 
organisms and their surroundings." These remain the objectives of this 
edition. This book is used as a text in courses taught at Washington State 
University and University of Wisconsin and the new edition incorporates 
knowledge gained through teaching this subject over the past 20 years. 
Suggestions of colleagues and students have been incorporated, and all of 
the material has been revised to reflect changes and trends in the science. 

Those familiar with the first edition will note that the order of pre- 
sentation is changed somewhat. We now start by describing the physical 
environment of living organisms (temperature, moisture, wind) and then 
consider the physics of heat and mass transport between organisms and 
their surroundings. Radiative transport is treated later in this edition, and 
is covered in two chapters, rather than one, as in the first edition. Since 
remote sensing is playing an increasingly important role in environmen- 
tal biophysics, we have included material on this important topic as well. 
As with the first edition, the h a 1  chapters are applications of previously 
described principles to animal and plant systems. 

Many of the students who take our courses come from the biolog- 
ical sciences where mathematical skills are often less developed than 
in physics and engineering. Our approach, which starts with more de- 
scriptive topics, and progresses to topics that are more mathematically 
demanding, appears to meet the needs of students with this type of back- 
ground. Since we expect students to develop the mathematical skills 
necessary to solve problems in mass and energy exchange, we have added 
many example problems, and have also provided additional problems for 
students to work at the end of chapters. 

One convention the reader will encounter early in the book, which is 
a significant departure from the first edition, is the use of molar units for 
mass concentrations, conductances, and fluxes. We have chosen this unit 
convention for several reasons. We believe molar units to be fundamen- 
tal, so equations are simpler with fewer coefficients when molar units 
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are used. Also, molar units are becoming widely accepted in biological 
science disciplines for excellent scientific reasons (e.g., photosynthetic 
light reactions clearly are driven by photons of light and molar units are 
required to describe this process.) A coherent view of the connectedness 
of biological organisms and their environment is facilitated by a uniform 
system of units. A third reason for using molar units comes from the 
fact that, when difisive conductances are expressed in molar units, the 
numerical values are virtually independent of temperature and pressure. 
Temperature and pressure effects are large enough in the old system to 
require adjustments for changes in temperature and pressure. These tem- 
perature and pressure effects were not explicitly acknowledged in the 
first edition, making that approach look simpler; but students who delved 
more deeply into the problem found that, to do the calculations correctly, 
a lot of additional work was required. A fourth consideration is that use 
of a molar unit immediately raises the question "moles of what?" The 
dependence of the numerical value of conductance on the quantity that 
is diffusing is more obvious than when units of m/s are used. This helps 
students to avoid using a diffusive conductance for water vapor when 
estimating a flux of carbon dioxide, which would result in a 60 percent 
error in the calculation. We have found that students adapt readily to the 
consistent use of molar units because of the simpler equations and explicit 
dependencies on environmental factors. The only disadvantage to using 
molar units is the temporary effort required by those familiar with other 
units to become familiar with "typical values" in molar units. 

A second convention in this book that is somewhat different from the 
first edition is the predominant use of conductance rather that resistance. 
Whether one uses resistance or conductance is a matter of preference, 
but predominant use of one throughout a book is desirable to avoid con- 
fusion. We chose conductance because it is directly proportional to flux, 
which aids in the development of an intuitive understanding of trans- 
port processes in complex systems such as plant canopies. This avoids 
some confusion, such as the common error of averaging leaf resistances 
to obtain a canopy resistance. Resistances are discussed and occasion- 
ally used, but generally to avoid unnecessarily complicated equations in 
special cases. 

A third convention that is different from the fist edition is the use of 
surface area instead of "projected area." This first appears in the discussion 
of the leaf energy budget and the use of "view factors." Because many bio- 
physicists work only with flat leaves, the energy exchange equations for 
leaves usually are expressed in terms of the "one-sided" leaf area; this is 
the usual way to characterize the area of flat objects. If the energy balance 
is generalized to nonflat objects, such as animal bodies or appendages, 
tree trunks or branches, or conifer needles, then this "one-side" area is 
subject to various interpretations and serious confusion can result. Errors 
of a factor of two frequently occur and the most experienced biophysi- 
cist has encountered difficulty at one time or another with this problem. 
We believe that using element surface area and radiation ''view factors" 
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are the best way to resolve this problem so that misinterpretations do not 
occur. For those interested only in exchanges with flat leaves, the develop- 
ment in this book may seem somewhat more complicated. However, "flat 
leaf' versions of the equations are easy to write and when interest extends 
to nonilat objects this analysis will be fully appreciated. When extending 
energy budgets to canopies we suggest herni-surface area, which is one- 
half the surface area. For canopies of flat leaves, the hemi-surface area 
index is identical to the traditional leaf area index; however for canopies 
of nonflat leaves, such as conifer needles, the hemi-surface area index is 
unambiguous while "projected" leaf area index depends on many factors 
that often are not adequately described. 

One convention that remains the same as the first edition is the use 
of J k g  for water potential. Although pressure units (kPa or MPa) have 
become popular in the plant sciences, potential is an energy per unit mass 
and the J/kg unit is more fundamental and preferred. Fortunately, J k g  
and kPa have the same numerical value so conversions are simple. 

As with the previous edition, many people contributed substantially 
to this book. Students in our classes, as well as colleagues, suggested 
better ways of presenting material. Several publishers gave permission 
to use previously published materials. Marcello Donatelli checked the 
manuscript for errors and prepared the manuscript and figures to be sent 
to the publisher. The staff at Springer-Verlag were patient and supportive 
through the inevitable delays that come with full schedules. We are also 
grateful to our wives and families for their help and encouragement in 
finishing this project. Finally, we would like to acknowIedge the contri- 
butions of the late Champ B. Tanner. Most of the material in this book was 
taught and worked on in some form by Champ during his years of teach- 
ing and research at University of Wisconsin. Both of us have been deeply 
influenced by his teaching and his example. We dedicate this edition to 
him. 

G. S. Campbell 
J. M. Norman 
Pullman and Madison, 1997 





Preface to the 
First Edition 

The study of environmental biophysics probably began earlier in man's 
history than that of any other science. The study of organism- 
environment interaction provided a key to survival and progress. 
Systematic study of the science and recording of experimental results goes 
back many hundreds of years. Benjamin Franklin, the early American 
statesmen, inventor, printer, and scientist studied conduction, evaporation, 
and radiation. One of his observation is as follows: 

My desk on which I now write, and the lock of my desk, are both 
exposed to the same temperature of the air, and have therefore the 
same degree of heat or cold; yet if I lay my hand successively on 
the wood and on the metal, the latter feels much the coldest, not 
that it is really so, but being a better conductor, it more readily than 
the wood takes away and draws into itself the fire that was in my 
skin. ' 

Progress in environmental biophysics, since the observation of 
Franklin and others, has been mainly in two areas: use of mathematical 
models to quantify rates of heat and mass transfer and use of the continuity 
equation that has led to energy budget analyses. In quantification of heat- 
and mass-transfer rates, environmental biophysicists have followed the 
lead of physics and engineering. There, theoretical and empirical models 
have been derived that can be applied to many of the transport problems 
encountered by the design engineer. The same models were applied to 
transport processes between living organisms and their surroundings. 

This book is written with two objectives in mind. The first is to de- 
scribe the physical micro environment in which living organisms reside. 
The second is to present a simplified discussion of heat- and mass-transfer 
models and apply them to exchange processes between organisms and 
their surroundings. One might consider this a sort of engineering approach 
to environmental biology, since the intent to teach the student to calcu- 
late actual transfer rates, rather than just study the principles involved. 

- - -  

' ~ r o m  a letter to John Lining, written April 14, 1757. The entire letter, along with other 
scientific writings by Franklin, can be found in Reference [1.2]. 
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Numerical examples are presented to illustrate many of the principles, 
and are given at the end of each chapter to help the student develop skills 
using the equations. Working of problems should be considered as es- 
sential to gaining an understanding of modern environmental biophysics 
as it is to any course in physics or engineering. The last four chapters of 
the book attempt to apply physical principles to exchange processes of 
living organisms, the intent was to indicate approaches that either could 
be or have been used to solve particular problems. The presentation was 
not intended to be exhaustive, and in many cases, assumptions made will 
severely limit the applicability of the solutions. It is hoped that the reader 
will find these examples helpful but will use the principles presented in 
the first part of the book to develop his own approaches to problems, using 
assumptions that fit the particular problem of interest. 

Literature citation have been given at the end of each chapter to indicate 
sources of additional material and possibilities for further reading. Again, 
the citations were not meant to be exhaustive. 

Many people contributed substantially to this book. I first became inter- 
ested in environmental biophysics while working as an undergraduate in 
the laboratory of the late Sterling Taylor. Walter Gardner has contributed 
substantially to my understanding of the subject through comments and 
discussion, and provided editorial assistance on early chapters of the 
book. Marcel Fuchs taught me about light penetration in plant canopies, 
provided much helpful discussion on other aspects of the book, and read 
and commented on the entire manuscript. James King read Chapters 7 
and 8 and made useful criticisms which helped the presentation. He and 
his students in zoology have been most helpful in providing discussion 
and questions which led to much of the material presented in Chapter 
7. Students in my Environmental Biophysics classes have offered many 
helpful criticisms to make the presentation less ambiguous and, I hope, 
more understandable. Several authors and publishers gave permission to 
use figures, Karen Ricketts typed all versions of the manuscript, and my 
wife, Judy, edited the entire manuscript and offered the help and encour- 
agement necessary to bring this project to completion. To all of these 
people, I am most grateful. 

Pullman, 1977 G. S. C. 
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Introduction 1 
The discipline of environmental biophysics relates to the study of energy 
and mass exchange between living organisms and their environment. The 
study of environmental biophysics probably began earlier than that of 
any other science, since knowledge of organis~nvironment interaction 
provided a key to survival and progress. Systematic study of the science 
and recording of experimental results, however, goes back only a few 
hundred years. Recognition of environmental biophysics as a discipline 
has occurred just within the past few decades. 

Recent progress in environmental biophysics has been mainly in two 
areas: use of mathematical models to quantify rates of energy and mass 
transfer and use of conservation principles to analyze mass and energy 
budgets of living organisms. In quantification of energy and mass trans- 
fer rates, environmental biophysicists have followed the lead of classical 
physics and engineering. There, theoretical and empirical models have 
been derived that can be applied to many of the transport problems en- 
countered by the design engineer. These same models can be applied to 
transport processes between living organisms and their surroundings. 

This book is written with two objectives inmind. The first is to describe 
and model the physical microenvironment in which living organisms re- 
side. The second is to present simple models of energy and mass exchange 
between organisms and their microenvironment with models of organism 
response to these fluxes of energy and matter. One might consider this 
a combined science and engineering approach to environmental biology 
because the intent is to teach the student to calculate actual transfer rates 
and to understand the principles involved. Numerical examples are pre- 
sented to illustrate many of the principles, and problems are given at the 
end of each chapter to help the student develop skill inusing the equations. 
Working the problems should be considered as essential to gaining an un- 
derstanding of modern environmental biophysics as it is to any course in 
physics or engineering. 

A list of symbols with definitions is provided at the beginning of this 
book, and tables of data and conversions are in appendices at the end of 
the book. It would be a good idea to look at those now, and use them 
frequently as you go through the book. References are given at the end of 
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each chapter to indicate sources of the materials presented and to provide 
additional information on subjects that can be treated only briefly in the 
text. Citations certainly are not intended to be exhaustive, but should lead 
serious students into the literature. 

The effects ofthe physical environment on behavior and life are such an 
intimate part of our everyday experience that one may wonder at the need 
to study them. Heat, cold, wind, and humidity have long been common 
terms in our language, and we may feel quite comfortable with them. 
However, we often misinterpret our interaction with our environment 
and misunderstand the environmental variables themselves. Benjamin 
Franklin, the early American statesman, inventor, printer, and scientist 
alludes to the potential for misunderstanding these interactions. In a letter 
to John Lining, written April 14, 1757 he wrote (Seeger, 1973): 

My desk on which I now write, and the lock of my desk, are both exposed to 
the same temperature of the air, and have therefore the same degree of heat or 
cold; yet if I lay my hand successively on the wood and on the metal, the latter 
feels much the coldest, not that it is really so, but being a better conductor, it more 
readily than the wood takes away and draws into itself the fire that was in my 
skin. 

Franklin's experiment and the analysis he presents help us understand 
that we do not sense temperature; we sense changes in temperature which 
are closely related to the flow of heat toward or away from us. The heat 
flux, or rate of heat flow depends on a temperature difference, but it also 
depends on the resistance or conductance of the intervening medium. 

Careful consideration will indicate that essentially every interaction 
we have with our surroundings involves energy or mass exchange. Sight 
is possible because emitted or reflected photons from our surroundings 
enter the eye and cause photochemical reactions at the retina. Hearing 
results from the absorption of acoustic energy from our surroundings. 
Smell involves the flux of gases and aerosols to the olfactory sensors. 
Numerous other sensations could be listed such as sunburn, heat stress, 
cold stress, and each involves the flux of something to or from the organ- 
ism. The steady-state exchange of most forms of matter and energy can 
be expressed between organisms and their surroundings as: 

Flux = g (C, - C,) 

where C, is the concentration at the organism exchange surface, C, is 
the ambient concentration, and g is an exchange conductance. As already 
noted, our senses respond to fluxes but we interpret them in terms of 
ambient concentrations. Even if the concentration at the organism were 
constant (generally not the case) our judgment about ambient concen- 
tration would always be influenced by the magnitude of the exchange 
conductance. Franklin's experiment illustrates this nicely. The higher con- 
ductance of the metal made it feel colder, even though the wood and the 
metal were at the same temperature. 
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1 .I Microenvironments 

Microenvironments are an intimate part of our everyday life, but we sel- 
dom stop to think of them. Our homes, our beds, our cars, the sheltered 
side of a building, the shade of a tree, an animal's burrow are all examples 
of microenvironments. The "weather" in these places cannot usually be 
described by measured and reported weather data. The air temperature 
may be 10" C and the wind 5 mls, but an insect, sitting in an animal 
track sheltered from the wind and exposed to solar radiation may be at 
a comfortable 25" C. It is the microenvironment that is important when 
considering organism energy exchange, but descriptions of microclimate 
are often complicated because the organism influences its microclimate 
and because microclimates are extremely variable over short distances. 
Specialized instruments are necessary to measure relevant environmental 
variables. Variables of concern may be temperature, atmospheric mois- 
ture, radiant energy flux density, wind, oxygen and COz concentration, 
temperature and thermal conductivity of the substrate (floor, ground, etc.), 
and possibly spectral distribution of radiation. Other microenvironmental 
variables may be measured for special studies. 

We first concern ourselves with a study of the environmental 
variables-namely, temperature, humidity, wind, and radiation. We then 
discuss energy and mass exchange, the fundamental link between organ- 
isms and their surroundings. Next we apply the principles of energy and 
mass exchange to a few selected problems in plant, animal, and human 
environmental biophysics. Finally, we consider some problems in radia- 
tion, heat, and water vapor exchange for vegetated surfaces such as crops 
or forests. 

1.2 Energy Exchange 

The fundamental interaction of biophysical ecology is energy exchange. 
Energy may be exchanged as stored chemical energy, heat energy, radiant 
energy, or mechanical energy. Our attention will be focused primarily on 
the transport of heat and radiation. 

Four modes of energy transfer are generally recognized in our common 
language when we talk of the "hot" sun (radiative exchange) or the "cold" 
floor tile (conduction), the "chilling" wind (convection), or the "stifling" 
humidity (reduced latent heat loss). An understanding of the principles 
behind each of these processes will provide the background needed to 
determine the physical suitability of a given environment for a particular 
organism. 

The total heat content of a substance is proportional to the total ran- 
dom kinetic energy of its molecules. Heat can flow from one substance 
to another if the average kinetic energies of the molecules in the two 
substances are different. Temperature is a measure of the average ran- 
dom kinetic energy of the molecules in a substance. If two substances at 
different temperatures are in contact with each other, heat is transferred 
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from the high-temperature substance to the low by conduction, a direct 
molecular interaction. If you touch a hot stove, your hand is heated by 
conduction. 

Heat transport by a moving fluid is called convection. The heat is first 
transferred to the fluid by conduction; the bulk fluid motion carries away 
the heat stored in the fluid. Most home heating systems rely on convection 
to heat the air and walls of the house. 

Unlike convection and conduction, radiative exchange requires no in- 
tervening molecules to transfer energy from one surface to another. A 
surface radiates energy at a rate proportional to the fourth power of its 
absolute temperature. Both the sun and the earth emit radiation, but be- 
cause the sun is at a higher temperature the emitted radiant flux density 
is much higher for the surface of the sun than for the surface of the earth. 
Much of the heat you receive from a campfire or a stove may be by radi- 
ation and your comfort in a room is often more dependent on the amount 
of radiation you receive from the walls than on the air temperature. 

To change from a liquid to a gaseous state at 20" C, water must absorb 
about 2450 joules per gram (the latent heat of vaporization), almost 600 
times the energy required to raise the temperature of one gram of water by 
one degree. Evaporation of water from an organism, which involves the 
latent heat required to convert the liquid water to vapor and convection of 
this vapor away from the organism, can therefore be a very effective mode 
of energy transfer. Almost everyone has had the experience of stepping 
out of a swimming pool on a hot day and feeling quite cold until the water 
dries from their skin. 

1.3 Mass and Momentum Transport 

Organisms in natural environments are subject to forces of wind or water 
and rely on mass transport to exchange oxygen and carbon dioxide. The 
force of wind or water on an organism is a manifestation of the transport 
of momentum from the fluid to the organism. Transport of momentum, 
oxygen, and carbon dioxide in fluids follow principles similar to those 
developed for convective heat transfer. Therefore, just one set ofprinciples 
can be learned and applied to all three areas. 

1.4 Conservation of Energy and Mass 

One of the most powerful laws used in analyzing organism-environment 
interaction is the conservation law. It states that neither mass nor energy 
can be created or destroyed by any ordinary means. The application of 
this law is similar to the reconciliation of your checking account. You 
compute the deposits and withdrawals, and the difference is the balance 
or storage. As an example, consider the energy balance of a vegetated 
surface. We can write an equation representing the inputs, losses, and 
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storage of energy as: 

Here, R, represents the net flux density of radiation absorbed by the sur- 
face, M represents the supply of energy to the surface by metabolism or 
absorption of energy by photosynthesis, H is the rate of loss of sensible 
heat (heat flow by convection or conduction due to a temperature differ- 
ence), hE is the rate of latent heat loss from the surface (E is the rate of 
evaporation of water and h is the latent heat of evaporation or the heat 
absorbed when a gram of water evaporates), and G is the rate of heat stor- 
age in the vegetation and soil. A similar equation could be written for the 
water balance of a vegetated surface. Since conservation laws cannot be 
violated, they provide valuable information about the fluxes or storage of 
energy or mass. In a typical application of Eq. (1.2) we might measure or 
estimate R,, M, H, and G, and use the equation to compute E. Another 
typical application is based on the fact that R,, H, E, and G all depend on 
the temperature of the surface. For some set of environmental conditions 
(air temperature, solar radiation, vapor pressure) there exists only one 
surface temperature that will balance Eq. (1.2). We use the energy budget I 

to find that temperature. I 

1.5 Continuity in the Biosphere 

The biosphere, which is where plants and animals live within the soil and 
atmospheric environments, can be thought of as a continuum of spatial 
scales and system components. A continuum of gas (air, water vapor, 
carbon dioxide, oxygen, etc.) exists from the free atmosphere to the air 
spaces within the soil and even the air spaces within leaves. A continuum 
of liquid water exists from pores within a wet soil to cells within a plant 
root or leaf. Throughout the system the interfaces between liquid and gas 
phases are the regions where water molecules go from one state to another, 
and these regions are where latent heat exchanges will occur. These latent 
heat exchanges provide a coupling between mass exchanges of water 
and energy exchanges. The soil is obviously linked to the atmosphere 
by conduction and diffusion through pores, but it is also linked to the 
atmosphere through the plant vascular system. 

Energy and mass conservation principles can be applied to this entire 
system or to specific components such as a single plant, leaf, xylem vessel, 
or even a single cell. The transport equations can also be applied to the 
entire system or to a single component. Clearly, one must define carefully 
what portion of the system is of interest in a particular analysis. 

Animals may be components of this system from microscopic organ- 
isms in films of water in the soil to larger fauna such as worms, or animals 
onleaves such as mites or grasshoppers, or yet larger animals in the canopy 
space. The particular microenvironment that the animal is exposed to will 
depend on interactions among components of this continuum. Animals, 
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in turn, may alter components of the continuum; for example, herbivores 
that eat leaves, mites that alter stomatal fimction, or a disease that inhibits 
photosynthesis. 

Energy or mass from one part or scale of this system can flow contin- 
uously into another part or scale and the consequence of this interaction 
is what is studied in "environmental biophysics." Water is pervasive 
throughout the biosphere, existing in solid, liquid, or gas states, and 
able to move from one place or state to another. Living organisms de- 
pend on water and have adapted in remarkable ways to its characteristics. 
Consider, for a moment, the flow of water in the soil-plant-atmosphere 
system. Rainfall impinges on the surface of the soil, after condensing 
from the vapor in the air, and infiltrates through the pores in response 
to water potential gradients to distribute water throughout the bulk soil. 
Water then moves through the soil, into the root, through the vascular 
system of a plant and into the leaf under the influence of a continuously 
decreasing water potential. At the leaf, liquid water is changed to water 
vapor, which requires a considerable amount of latent heat, and the wa- 
ter vapor moves in response to vapor pressure differences between the 
leaf and the atmosphere rather then water potential gradients. This wa- 
ter vapor diffuses through the stomatal pore and still-air boundary layer 
near the leaf surface and is carried by turbulent convection through the 
canopy space, the planetary boundary layer, and ultimately to the free 
atmosphere to be distributed around the globe and condensed again as 
rain. The energy required to change the liquid water in leaves to water 
vapor, which may be extracted from the air or provided by radiant energy 
from the sun, couples energy exchange to water exchange. The transport 
laws can be used in conjunction with conservation of mass and energy 
to describe the movement of water throughout this system. Even though 
the driving forces for movement of water may vary for different parts of 
the system, appropriate conductances can be defined to describe transport 
throughout the system. In some cases the form of the transport equation 
may vary for different parts of the system, but the conservation of mass 
principle is used to link transport equations for these various parts of the 
system together. 

Clearly, the biosphere is a complex continuum, not only in terms of the 
reality of the interconnectedness of living things and their environments, 
but also in terms of the mathematical and physical formulations that 
biophysicists use to describe this remarkable system. Rational exploration 
of the biosphere is just beginning and it is our hope that this new "head" 
knowledge will be woven into your being in such a way that you will 
have an increased awareness of your dependence on and implicit faith in 
that which is not known, as well as having some simple quantitative tools 
at your disposal to enhance a harmonious relationship between yourself 
and your environment and serve others at the same time. 

A schematic representation of the connectivity of energy and mass in 
the biosphere is illustrated in Fig. 1.1. 
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FIGURE 1 .l. Schematic representation of the inter-connectedness of water (in 
italics), carbon (underlined), radiation (normal font) and energy (bold) budgets 
in a biosphere. 

1.6 Models, Heterogeneity, and Scale 

Throughout this book we refer to models. A model is a simple repre- 
sentation of a more complex form or phenomena. The term "model" is 
general and no interpretation of data is possible without resort to some 
kind of model; whether implied or explicitly declared. Many kinds of 
models exist and we will emphasize deterministic, mathematical models 
of physical and biological systems with some considerations of probabil- 
ity formulations. The description of natural phenomena can vary along 
a continuum of complexity from the trivial to the incomprehensible, and 
the appropriate level of complexity depends on the purpose. The applica- 
tion of fundamental principles to natural phenomena frequently requires 
adaptation of those principles or creative simplification of the natural sys- 
tem so that it reasonably conforms to the requirements of the underlying 
principles. Creative simplification of natural materials or phenomena is 
the "art" of environmental biophysics, and its practice depends on one's 
understanding of relevant fundamentals; a purpose of this book. Clearly, 
questions can be posed that require solutions of staggering complexity. 
All of nature is exceedingly complex, perhaps infinitely complex; how- 
ever, insight can be gained into its complexity through the simplicity of a 
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model. As Albert Einstein is purported to have said: "Everythmg should 
be made as simple as possible, but not simpler." 

The relation between the spatial scale of some desired prediction or 
understanding and the scale of heterogeneity inherent in the system is 
essential to the process of simplification. Materials in nature tend to be 
heterogeneous, not pure. One of the distinguishing features of human 
activity is the tendency to categorize nature into its elements, purify the 
naturally occurring mixtures, and reassemble the pure elements into new 
arrangements. In nature, homogeneous materials, which are materials 
with uniform properties throughout their volumes, tend to be rare. Obvi- 
ously, if we go to fine enough scale, nothing is homogeneous; therefore 
homogeneity depends on spatial scale. In environmental biophysics we 
consider natural materials such as soil, rock layers, vegetation mixtures, 
and animal coats. The principles that are commonly used in environmen- 
tal biophysics are most easily understood and used with pure materials. 
Therefore a key aspect of environmental biophysics is knowing when 
assumptions of homogeneity are adequate, and when a meaningful solu- 
tion to a problem requires some level of treatment of heterogeneity. Most 
often we treat natural media as homogeneous but assign properties that 
preserve the major influence of known heterogeneity. 

Consider a soil, which consists of a mineral matrix made up ofparticles 
of various sizes and characteristics, with organic matter at various stages 
of decomposition, air, water, plant roots, worms, insects, fungi, bacteria, 
etc. Soil certainly is a heterogeneous medium. However, we can simulate 
heat transport on the scale of meters quite well by assuming soil to be 
homogeneous with a thermal conductivity that depends on water content, 
particle type and size distribution, and density. In the case of soil, the 
heterogeneity usually is small (millimeters) compared to the scale on 
which we desire to predict heat flow (meters). However, if we wish to 
predict the temperature and moisture environments beneath individual 
rocks on the surface of the soil because that is where some organism 
lives, then we have to deal with the apparent heterogeneity by using 
more complex descriptions. In the case of this heterogeneous material 
called "soil," various bulk properties are defined such as bulk density, 
heat capacity, air permeability, capillary conductivity, etc. 

A second heterogeneous natural system of interest to us is a plant 
canopy, which consists of leaves, branches, stems, h i t s ,  and flowers all 
displayed with elegance throughout some volume and able to move in re- 
sponse to wind, heliotropism, growth, or water stress. Simple equations 
have beenused quite successfully to describe light penetration and canopy 
photosynthesis by assuming the canopy to behave like a homogeneous 
green slime. In spite of the seeming inappropriateness of describing pho- 
tosynthesis of a 50 m tall forest canopy by radiation penetration through 
a green slime, a convincing intuitive argument can be forged using geom- 
etry and statistics of random distributions that is supported by direct field 
measurements. In fact, statistics is one of the means used to appropri- 
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ately average over heterogeneity to define properties of a representative 
homogeneous substitute. 

1.7 Applications 

From the examples already given, it is quite obvious that environmental 
biophysics can be applied to a broad spectrum of problems. Fairly com- 
plete evaluations already exist for some problems, though much work 
remains to be done. Analysis of human comfort and survival in hot and 
cold climates requires a good understanding of the principles we will 
discuss. Preferred climates, survival, and food requirements of domestic 
and wild animals can also be considered. Plant adaptations in natural sys- 
tems can be understood, and optimum plant types and growing conditions 
in agriculture and forestry can be selected through proper application of 
these principles. Even the successful architectural design of a building, 
which makes maximum use of solar heat and takes into account wind 
and other climatological variables, requires an understanding of this sub- 
ject. Finally, models that forecast the weather or predict changes in past 
and future climates rely heavily on the principles of environmental bio- 
physics to accommodate exchanges between the surface of the earth and 
the atmosphere. 

As we study environmental biophysics, we will find that people from 
"primitive" cultures, and even animals, often have a far better under- 
standing of the application of its principles than we do. Understanding 
the environment and how best to interact with it often makes the differ- 
ence between life and death for them, whereas for us it may just mean a 
minor annoyance or an increased fuel bill. 

1.8 Units 

Units consistent with the Systeme International (SI) will be used in this 
book. The SI base units and their accepted symbols are the meter (m) for 
length, the kilogram (kg) for mass, the second (s) for time, the Kelvin 
(K) for thermodynamic temperature, and the mole (mol) for the amount 
of substance. Units derived from these, which we use in this book are 
given in Table 1.1. Additional derived units can be found in Page and 
Vigoureux (1974). 

The Celsius temperature scale is more convenient for some biophysical 
problems than the thermodynamic (Kelvin) scale. We will use both. By 
definition C = K - 273.15. Since the Celsius degree is the same size 
as the Kelvin degree, derived units with temperature in the denominator 
can be written as either C-' or K-' . For example, units for specific heat 
are either J kg-' C-' or J kg-' K-'. To distinguish between the two 
temperature scales, we will use T in standard font for Celsius temperature, 
and in bold font (T) for Kelvin temperature. Some useful factors for 
converting to SI units can be found in Table A.4 in the Appendix. 
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TABLE 1.1. Examples of derived SI units and their symbols. 

Quantity Name Symbol SI base units Derived Units 

area 
volume 
velocity 
density 
force 
pressure-forcelarea 
energy 
chemical potential 
power 
concentration 
mol flux density 
heat flux density 
specific heat 

- 
- 
- 
- 

Newton 
Pascal 
joule 
- 

watt 
- 
- 
- 
- 

m2 

m3 

m s-I 
kg m-3 
m kg s-2 
kg m-I s-2 
m2 kg s2 
m2 s - ~  
m2 kg s-3 
mol 
mol m-2 s-I 
kg s3 
m2 s-2 K-I 

- 
- 
- 
- 
- 
N m-2 
N m  
J kg-' 
J s-I 
- 
- 

W m-2 
J kg-' K-' 

To make the numbers used with these units convenient, prefixes are 
attached indicating decimal multiples of the units. Accepted prefixes, 
symbols, and multiples are shown in Table 1.2. The use of prefix steps 
smaller than lo3 is discouraged. We will make an exception in the use 
of the cm, since mm is too small to conveniently describe the sizes of 
things like leaves, and m is too large. Prefixes can be used with base units 
or derived units, but may not be used on units in the denominator of a 
derived unit (e.g., g/m3 or mg/m3 but not mg/cm3). The one exception to 
this rule that we make is the use of kg, which may occur in the denominator 
because it is the fundamental mass unit. Note in Table 1.2 that powers of 
ten are often used to write very large or very small numbers. For example, 
the number 0.0074 can be written as 7.4 x or 86400 can be written 
as 8.64 x lo4. 

Most of the numbers we use have associated units. Before doing any 
computations with these numbers, it is important to convert the units to 
base SI units, and to convert the numbers using the appropriate multiplier 
from Table 1.2. It is also extremely important to write the units with the 
associated numbers. The units can be manipulated just as the numbers 
are, using the rules of multiplication and division. The quantities, as well 
as the units, on two sides of an equation must balance. One of the most 
useful checks on the accuracy of an equation in physics or engineering 
is the check to see that units balance. A couple of examples may help to 
make this clear. 

Example 1.1. The energy content of a popular breakfast cereal is 3.9 
kcallg. Convert this value to SI units (Jikg). 
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TABLE 1.2. Accepted SI prefixed and symbols for multiples 
and submultiples of units. 

Multiplication Factor Prefix Symbol 

exa 
Pets 
tera 
gigs 
mega 
kilo 
hecto 
deka 
deci 
centi 
milli 
micro 
nano 
pic0 
femto 
atto 

Solution. Table A.4 gives the conversion, 1 J = 0.2388 cal so 

3.9kcal 103cal 103g 
X - X -  

1 J  J 
x = 16.3 x lo6 - 

g kcal kg 0.2388 cal kg 
= 16.3 MJ/kg. 

Example 1.2. Chapter 2 gives a formula for computing the damping 

depth of temperature fluctuations in soil as D = k, where K is the L- 
thermal diffusivity of the soil and w is the angular frequency of tem- 
perature fluctuations at the surface. Figure 8.4 shows that a typical dif- 
fusivity for soil is around 0.4mm2/s. Find the diurnal damping depth. 

Solution. The angular frequency is 2n/P,  where P is the period of 
temperature fluctuations. For diurnal variations, the period is one day 
(see Chs. 2 & 8 for more details) so w = 2 n l l  day. Converting w and K 

to SI base units gives: 

2n 1 day 1 hr 1 min 
w=- x - x - X-  = 7.3 x 10 -~  s-' 

1 day 24hr 60min 60 s 
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Example 1.3. Units for water potential are Jlkg (see Ch. 4). The gravita- 
tional component of water potential is calculated from llrg = -gz  where 
g  is the gravitational constant (9.8 and z  is height (m) above a 
reference plane. Reconcile the units on the two sides of the equation. 

Solution. Note from Table 1.1 that base units for the joule are kg m2 s-2 
so 

The units for the product, gz are therefore the same as the units for @. 

Confusion with units is minimized if the numbers which appear within 
mathematical operators ( J, exp, In, sin, cos, tan, etc.) are dimensionless. 
In most cases we eliminate units within operators, but with some empirical 
equations it is most convenient to retain units within the operator. In these 
cases, particular care must be given to specifying the units of the equation 
parameters and the result. For example, in Ch. 7 we compute the thermal 
boundary layer resistance of a flat surface from 

where d is the length of the surface in m, u is the wind speed across the 
surface in d s ,  and rHa is the boundary layer resistance in m2 slmol. The 
constant 7.4 is the numerical result of evaluating numerous coefficients 
that can reasonably be represented by constant values. The constant has 
units of m2 s1/2/mol, but this is not readily apparent from the equation. If 
one were to rigorously cancel units in Eq. (1.3) without realizing that the 
7.4 constant has units, the result would appear to be an incorrect set of 
units for resistance. It would be a more serious matter if d were entered, 
for example, in mm, or u in cm/s, since then the result would be wrong. 
Whenever empirical equations like Eq. (1.3) are used in this book, we 
assume that parameters (u and d in the equation) are in SI base units, and 
we will specify the units of the result. This should avoid any ambiguity. 

One other source of confusion can arise when units appear to cancel, 
leaving a number apparently dimensionless, but the units remain im- 
portant to interpretation and use of the number. For example, the water 
content of a material might be reported as 0.29, or 29%. However, a wa- 
ter content of 0.29 m3/m3 can be quite different from a water content of 
0.29 kgkg. This type of confusion can always be eliminated by stating the 
units, even when they appear to cancel. In this book we use mole fraction, 
or mol/mol to express gas concentration. These units, though appearing 
to cancel, really represent moles of the particular gas, say water vapor, per 
mole of air. We therefore retain the moYmol units with the numbers. It is 
often helpful to write out mol H20 or mol air so that one is not tempted to 
cancel units which should not be canceled. This notation, however, tends 
to become cumbersome, and therefore is generally not used in the book. 
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Problems 

1.1. Explain why a concrete floor feels colder to you than a carpeted 
floor, even though both are at the same temperature. Would a snake 
or cockroach (both poikilothem) arrive at the same conclusion you 
do about which floor feels colder? 

1.2. In what ways (there are four) is energy transferred between living 
organisms and their surroundings? Give a description of the physical 
process responsible for eack and an example of each. 

1.3. Convert the following to SI base units: 300 km, 5 hours, 0.4 rnm2/s, 
25 kPa, 30 crnls, and 2 mmlmin. 

1.4. In the previous edition ofthis book, and in much ofthe older literature, 
boundary layer resistances were expressed in units of slm. The units 
we will use are m2 slmol. To convert the old units to the new ones, 
divide them by the molar density of air (41.65 mol m-3 at 20' C and 
101 Ha). If boundary layer resistance is reported to be 250 slrn, what 
is it in m2 slmol? What is the value of the constant in Eq. (1.3) if Ae 
result is to be in slrn? 
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Rates of biochemical reactions within an organism are strongly depen- 
dent on its temperature. The rates of reactions may be doubled or tripled 
for each 10" C increase in temperature. Temperatures above or below 
critical values may result in denaturation of enzymes and death of the 
organism. 

A living organism is seldom at thermal equilibrium with its microen- 
vironment, so the environmental temperature is only one of the factors 
determining organism temperature. Other influences are fluxes of radiant 
and latent heat to and from the organism, heat storage, and resistance to 
sensible heat transfer between the organism and its surroundings. Even 
though environmental temperature is not the only factor determining or- 
ganism temperature, it is nevertheless one of the most important. In this 
chapter we describe environmental temperature variation in the biosphere 
and discuss reasons for its observed characteristics. We also discuss 
methods for extrapolating and interpolating measured temperatures. 

2.1 Typical Behavior of Atmospheric and Soil 
Temperature 

If daily maximum and minimum temperatures were measured at various 
heights above and below the ground and then temperature were plotted 
on the horizontal axis with height on the vertical axis, graphs similar to 
Fig. 2.1 would be obtained. Radiant energy input and loss is at the soil or 
vegetation surface. As the surface gets warmer, heat is transferred away 
from the surface by convection to the air layers above and by conduction 
to the soil beneath the surface. Note that the temperature extremes occur 
at the surface, where temperatures may be 5 to 10" C different from tem- 
peratures at 1.5 m, the height of a standard meteorological observation. 
This emphasizes again that the microenvironment may differ substantially 
from the macroenvironment. 

A typical air temperature versus time curve for a clear day is shown 
in Fig. 2.2. Temperatures measured a few centimeters below the soil 
surface would show a similar diurnal pattern. The maximum rate of solar 
heat input to the ground is around 12 hours. 
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FIGURE 2.1. Hypothetical profiles of maximum and minimum temperature above 
and below soil surface on a clear, calm day. 

The fact that the temperature maximum occurs after the time of max- 
imum solar energy input is sigtllficant. This type of lag is typical of any 
system with storage and resistance to flow. Temperatures measured close 
to the exchange surface have less time lag and a larger amplitude than 
those farther from the surface. The principles involved can be illustrated 
by considering heat losses to a cold tile floor when you place your bare 
foot on it. The floor feels coldest (maximum heat flux to the floor) when 
your foot just comes in contact with it, but the floor reaches maximum 
temperature at a later time when heat flux is much lower. 

The amplitude of the diurnal temperature wave becomes smaller with 
increasing distance from the exchange surface. For the soil, this is because 
heat is stored in each succeeding layer so less heat is passed on to the 
next layer. At depths greater than 50 cm or so, the diurnal temperature 
fluctuation in the soil is hardly measurable (Fig. 2.1). 

The diurnal temperature wave penetrates much farther in the atmo- 
sphere than in the soil because heat transfer in the atmosphere is by eddy 
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Time (hrs) 

FIGURE 2.2. Hourly air temperature (points) on a clear fall day at Hanford, WA. 
The curve is used to interpolate daily maximum and minimum temperatures to 
obtain hourly estimates. 

motion, or transport of parcels of hot or cold air over relatively long verti- 
cal distances, rather than by molecular motion. Within the first few meters 
of the atmosphere of the earth, the vertical distance over which eddies 
can transport heat is directly proportional to their height above the soil 
surface. The larger the transport distance, the more effective eddies are 
in transporting heat, so the air becomes increasingly well mixed as one 
moves away from the surface of the earth. This mixing evens out the tem- 
perature differences between layers. This is the reason for the shape of 
the air temperature profiles in Fig. 2.1. They are steep close to the surface 
because heat is transported only short distances by the small eddies. Far- 
ther from the surface the eddies are larger, so the change of temperature 
with height (temperature gradient) becomes much smaller. 

In addition to the diurnal temperature cycle shown in Fig. 2.2, there 
also exists an annual cycle with a characteristic shape. The annual cycle 
of mean temperature shown in Fig. 2.3 is typical of high latitudes which 
have a distinct seasonal pattern fiom variation in solar radiation over the 
year. Note that the difference between maximum and minimum in Fig. 2.3 
is similar to the difference between maximum and minimum of the diurnal 
cycle in Fig. 2.2. Also note that the time of maximum temperature (around 
day 200) significantly lags the time of maximum solar input (June 2 1 ; day 
172). The explanation for this lag is the same as for the diurnal cycle. 
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FIGURE 2.3. Daily average temperature variation at Hanford, WA for 1978. The 
heavy line shows the monthly mean temperatures. 

2.2 Random Temperature Variation 

In addition to the more or less predictable diurnal and annual temperature 
variations shown in Figs. 2.2 and 2.3, and the strong, predictable spatial 
variation in the vertical seen in Fig. 2.1, there are random variations, the 
details of which cannot be predicted. We can describe them using statis- 
tical measures (mean, variance, correlation etc.), but can not interpolate 
or extrapolate as we can with the annual, diurnal, and vertical variations. 
Figure 2.3 shows an example of these random variations. The long-term 
monthly mean temperature shows a consistent pattern, but the daily av- 
erage temperature varies around this monthly mean in an unpredictable 
way. Figure 2.4 shows air temperature variation over an even shorter time. 
It covers a period of about a minute. Temperature was measured with a 
25 pm diameter thermocouple thermometer. 

The physical phenomena associated with the random variations seen 
in Figs. 2.3 and 2.4 make interesting subjects for study. For example, the 
daily variations seen in Fig. 2.3 are closely linked to weather patterns, 
cloud cover, and input of solar energy. The fluctuations in Fig. 2.4 are par- 
ticularly interesting because they reflect the mechanism for heat transport 
in the lower atmosphere, and are responsible for some interesting optical 
phenomena in the atmosphere. 

Since heat transfer in air is mainly by convection, or transport ofparcels 
of hot or cold air, we might expect the air temperature at any instant to 
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FIGURE 2.4. Air temperature 2 m above a desert surface at White Sands Missile 
Range, NM. Measurements were made near midday using a 25 pm diameter 
thermocouple. 

differ substantially from the mean air temperature that one might measure 
with a large thermometer. The relatively smooth baseline in Fig. 2.4, with 
jagged interruptions, indicates a suspension of hot ascending parcels in a 
matrix of cooler, descending air. Well mixed air is subsiding, being heated 
at the soil surface, and breaking away from the surface as convective 
bubbles when local heating is sufficient. 

Warm air is less dense than cold air, and therefore has a lower index 
of refraction. As light shines though the atmosphere, the hot and cold 
parcels of air act as natural lenses, causing the light to constructively 
and destructively interfere, giving rise to a diffraction pattern. Twinkling 
of stars and the scintillation of terrestrial light sources at night are the 
result of this phenomenon. The diffraction pattern is swept along with 
the wind, so you can look at the lights of a city on a clear night from some 
distance and estimate the wind speed and direction from the drift of the 
scintillation pattern. 

So-called "heat waves" often seen on clear days also result from re- 
fractive index fluctuations (Lawrence et al., 1970). The drift ofheat waves 
can be seen, and wind direction and speed can sometimes be estimated 
from the drift velocity. This phenomenon has been used to measure wind 
speed (Lawrence et al., 1972). More extreme heating at the surface can 
result in a mirage, where the heated, low-density air near the surface of 
the earth refracts the light from the sky to the observers eye, making land 
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look like water. This is the result of the systematic vertical variation in 
temperature above the heated surface, rather than the result of the random 
variations that we were just discussing. 

Air temperatures are often specified with a precision of 0.5" to 0. lo C. 
From Fig. 2.4 it should be clear that many instantaneous temperature 
measurements would need to be averaged, over a relatively long time 
period, to make this level of precision meaningful. Averages of many 
readings, taken over 15 to 30 minutes, are generally used. Figures 2.1 
and 2.2 show the behavior of such long-term temperature averages. Large 
thermometers can provide some of this averaging due to the thermal mass 
of the sensing element. 

Random temperature variations are, of course, not limited to the time 
scales just mentioned. Apparently random variations in temperature can 
be shown from the geologic record, and were responsible, for example, 
for the ice ages. There is considerable concern, at present, about global 
warming and climate change, and debate about whether or not the climate 
has changed. Clearly, there is, always has been, and always will be climate 
change. The more important question for us is whether human activity 
has or will measurably alter the random variation of temperature that has 
existed for as long as the earth has been here. 

2.3 Modeling Vertical Variation in Air 
Temperature 

The theory of turbulent transport, which we study in Ch. 7, specifies the 
shape of the temperature profile over a uniform surface with steady-state 
conditions. The temperature profile equation is: 

where T ( z )  is the mean air temperature at height z ,  To is the apparent 
aerodynamic surface temperature, zH  is a roughness parameter for heat 
transfer, H is the sensible heat flux from the surface to the air, jk, is the 
volumetric specific heat of air (1200 J m-3 C-' at 20" C and sea level), 
0.4 is von Karman's constant, and u* is the friction velocity (related to 
the friction or drag of the stationary surface on the moving air). The 
reference level from which z is measured is always somewhat arbitrary, 
and the correction factor d ,  called the zero-plane displacement, is used 
to adjust for this. For a flat, smooth surface, d = 0. For a uniformly 
vegetated surface, Z H  1: 0.02h, and d  1: 0.6h, where h is canopy height. 

We derive Eq. (2.1) in Ch. 7, but use it here to interpret the shape of the 
temperature profile and extrapolate temperatures measured at one height 
to other heights. The following points can be made. 

1. The temperature profile is logarithmic (a plot of h ( z  - d ) / z ~  vs. T ( z )  
is a straight line). 
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2. Temperature increases with height when H is negative (heat flux to- 
ward the surface) and decreases with height when H is positive. During 
the day, sensible heat flux is generally away from the surface so T 
decreases with height. 

3. The temperature gradient at a particular height increases in magnitude 
as the magnitude of H increases, and decreases as wind or turbulence 
increases. 

Example 2.1. The following temperatures were measured above a 10 cm 
high alfalfa crop on a clear day. Find the aerodynamic surface temperature, 
To - 

Height (m) 0.2 0.4 0.8 1.6 
Temperature (C) 26 24 23 21 

Solution. It can be seen from Eq. (2.1) that T (z) = To when the In term 
is zero, which happens when z = d + ZH since ~ ( Z H / Z H )  = ln(1) = 0. 
If h[(z - d)/zH] is plotted versus T (normally the independent variable 
is plotted on the abscissa or horizontal axis, but when the independent 
variable is height, it is plotted on the ordinate or vertical axis) and ex- 
trapolate to zero, the intercept will be To. For a 10 cm (0.1 m) high 
canopy, zH = 0.002 m, and d = 0.06 m. The following can therefore be 
computed: 

- 

Height (m) 0.2 0.4 0.8 1.6 
Temp. (C) 26 24 23 21 
(Z - ~ ) / z H  70 170 370 770 
I~[(z - ~ ) / z H ]  4.25 5.14 5.91 6.65. 

The Figure for Example 2.1 on the following page is plotted using this 
data, and also shows a straight line fitted by linear least squares through 
the data points that is extrapolated to zero on the log-height scale. The 
intercept is at 34.6" C, which is the aerodynamic surface temperature. 

Example 2.2. The mean temperature at 5:00 hrs, 2 m above the soil 
surface is 3" C. At a height of 1 m, the temperature is 1" C. If the crop 
below the point where these temperatures are measured is 50 cm tall, will 
the crop experience a temperature below freezing? 
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Solution. This problem could be solved by plotting, as we did inExample 
1, or it could be done algebraically. Here we use algebra. The constants, 
H/(0.4pcPu*) in Eq. (2.1) are the same for all heights. For convenience, 
we represent them by the symbol A.  Equation (2.1) can then be written 
for each height as 

Subtracting the second equation from the first, and solving for A gives 
A = -2.25" C. Substituting this back into either equation gives To = 
-8.6" C. Knowing these, now solve for T(h) where h = 0.5 m: 

So the top of the canopy is below the freezing temperature. 

These two examples illustrate how temperatures can be interpolated 
or extrapolated. In each case, two temperatures are required, in addition 
to information about the height of roughness elements at the surface. 
Typically temperature is measured at a single height. From Eq. (2.1), it 
is clear that additional information about the sensible heat flux density 
H and the wind would be needed to extrapolate a single temperature 
measurement. This is taken up later when we have the additional tools 
needed to model heat flux. 
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2.4 Modeling Temporal Variation in Air 
Temperature 

Historical weather data typically consist of measurements of daily max- 
imum and minimum temperature measured at a height of approximately 
1.5 m. There are a number of applications which require estimates of 
hourly temperature throughout a day. Of course, there is no way of know- 
ing what the hourly temperatures were, but a best guess can be made by 
assuming that minimum temperatures normally occur just before sunrise 
and maximum temperatures normally occur about two hours after solar 
noon. The smooth curve in Fig. 2.2 shows this pattern. The smooth curve 
was derived by fitting two terms of a Fourier series to the average of 
many days of hourly temperature data which had been normalized so that 
the minimum was 0 and the maximum was 1. The dimensionless diurnal 
temperature function which we obtained in this way is: 

where w = n/12, and t is the time of day in hours (t = 12 at solar noon). 
Using this function, the temperature for any time of the day is given by 

T(t) = Tx,i-~r(t> + Tn,i[l - r( t>I  O < t 1 5  

T(t) = Tx,ir(t) + Tn,i[l - r( t>I  5 < t 5 14 (2.3) 

T(t) = Tx,ilr(t) + Tn,i+l[l - r(t)I 14 < t < 24. 

Here, Tx is the daily maximum temperature and Tn is the minimum tem- 
perature. The subscript i represents the present day; i - 1 is the previous 
day, and i + 1 is the next day. The curve in Fig. 2.2 was drawn using 
Eqs. (2.2) and (2.3). Note that t is solar time. The local clock time usually 
differs from solar time, so adjustments must be made. These are discussed 
in detail in a later chapter. 

Example 2.3. Estimate the temperature at 10 AM on a day when the 
minimum was 5" C and the maximum was 23" C. 

Solution. At t = 10 hrs, (note that angles are in radians) 

+ 0.11 sin ( 2 x 3.14 x 10 
12 

Since 10 is between 5 and 14, the middle form of Eq. (2.3) is used, so 

2.5 Soil Temperature Changes with Depth and 
Time 

The temperature of the soil environment is also important to many liv- 
ing organisms. Figure 2.1 shows a typical range for diurnal temperature 
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variation with depth in soil. The features to note are that the temperature 
extremes occur at the surface where radiant energy exchange occurs, and 
that the diurnal variation decreases rapidly with depth in the soil. Figure 
2.5 also shows these relationships and gives additional insight into soil 
temperature variations. Here, temperatures measured at three depths are 
shown. 

Note that the diurnal variation is approximately sinusoidal, that the am- 
plitude decreases rapidly with depth in the soil, and that the time of maxi- 
mum andminimum shifts with depth. At the surface, the time ofmaximum 
temperature is around 14:OO hours, as it is in the air. At deeper depths the 
times of the maxima and minima lag solar noon even farther, and at 30 to 
40 cm, the maximum is about 12 hours after the maximum at the surface. 

We derive equations for heat flow and soil temperature later when we 
discuss conductive heat transfer. For the moment, we just give the equation 
which models temperatures in the soil when the temperature at the surface 
is known. This model assumes uniform soil properties throughout the 
soil profile and a sinusoidally varying surface temperature. Given these 
assumptions, the following equation gives the temperature as a function 
of depth and time: 

1 
0 6 12 18 24 30 36 42 48 

Time (hrs) 

FIGURE 2.5. Hypothetical temperature variations in a uniform soil at the surface 
and two depths showing the attenuation of diurnal variations and the shift in 
maxima and minima with depth. 
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where Tave is the mean daily soil surface temperature, o is n/12, as in 
Eq. (2.2), A(0) is the amplitude of the temperature fluctuations at the 
surface (half of the peak-to-peak variation) and D is called the damping 
depth. The "-8" in the sine function is a phase adjustment to the time 
variable so that when time t = 8, the sine of the quantity in brackets is 
zero at the surface (z = 0). We discuss computation of diurnal damping 
depth in Ch. 8. It has a value around 0.1 m for moist, mineral soils, and 
0.03 to 0.06 m for dry mineral soils and organic soils. 

In many cases we are not interested in the time dependence of the soil 
temperature, but would just like to know the range of temperatures at a 
particular depth. It is known that the range of the sine function is - 1 to 
1 so Eq. (2.4) gives the range of soil temperature variation as 

where the + gives the maximum temperatures and the - the minimum. 

Example 2.4. At what depth is the soil temperature within f 0.5" C of 
the mean daily surface temperature if the temperature variation at the 
surface (amplitude) is f 15" C? 

Solution. The amplitude of the desired temperature variation is 0.5" C. 
Rearranging Eq. (2.5) and taking the logarithm of both sides gives 

If D = 12cm, then the depth for diurnal variations less than k0.5"C 
would be 3.4 x 12 cm = 41 cm. Therefore a depth of at least 40 cm needs 
to be dug to obtain a soil temperature measurement that is not influ- 
enced by the time of day the temperature is measured. 

The annual soil temperature pattern is similar to the diurnal one, but 
with a much lower frequency and a much larger damping depth. Equa- 
tions (2.4) and (2.5) are used to describe the annual variation, but D is 
around 2 m, and o is 2x1365 days. 

While Eqs. (2.4) and (2.5) are u se l l  relationships for getting a general 
idea of how soil temperature varies with depth and time, it is important to 
remember their limitations. The thermal properties do vary with depth, 
and the temperature variation at the surface is not necessarily sinusoidal. 
Temperature variations over periods longer than a day or a year also have 
an effect. In spite of these limitations, however, a lot can be learned from 
this simple model. 

Clearly, from Eq. (2.4), the value of the damping depth D is key to 
predicting the penetration into the soil of a temperature variation at the 
surface. Data such as that in Fig. 2.5 can be used to estimate D. Solving 
Eq. (2.5) for T(z) - Tave and applying it at two depths permits solution 
for D. If the amplitude of the temperature wave is T ( 2 , )  - Twe = A1 at 
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one depth and is T ( z2 )  - Tave = A2 at a second depth, then 

2.6 Temperature and Biological Development 

Now that we have some idea of the behavior of temperature in the natural 
environment of living organisms, we want to consider temperature from 
a biological perspective. For this analysis, we assume that temperatures 
of plants, microbes, and insects are the same as the temperature of their 
environment. We need to remember, however, that such is generally not 
the case. Later we develop the tools to compute organism temperature 
from environmental temperature and can then consider what effect this 
will have on the organism. 

Temperature strongly influences the rates of all metabolic processes 
in living organisms, and therefore affects almost all aspects of the growth 
and development of an organism. Here we want to consider the effect of 
temperature on the rate of development. We define development as the 
orderly progress of an organism through defined stages from germination 
to death. Development differs from growth, which we define as the ac- 
cumulation of dry matter. Developmental stages vary, depending on the 
organism being described. In plants, stages such as germination, emer- 
gence, leaf appearance, flowering, and maturity can be defined, as can 
intermediate stages within many of these stages. In insects, stages such 
as egg, larva, and adult can be identified, and with other living organisms 
developmental stages can be similarly identified and defined. 

Figure 2.6 shows the time taken for completion of the egg stage of 
Dacus cucurbitae at constant temperatures ranging from 10" to 35" C. 
Development time is short at temperatures between 20" and 30" C, but 
increases markedly at both higher and lower temperatures. Above 37" C 
and below 15" C, development times are very long. We are interested in 
determining the time taken for completion of the egg stage (or some other 
developmental stage) under varying temperature conditions. This can be 
found by computing the reciprocals of the times in Fig. 2.6 to obtain a rate 
of development. Figure 2.7 shows the rate of development (with units of 
completed stages per day) as a function of temperature. The shape of this 
curve is similar for many biological processes, and has been described 
mathematically using the theory of rate processes (Sharpe and DeMichele, 
1977; Wagner, et al. 1984). Such detailed models are written in tenns of 
three exponentials, and are therefore difficult to both fit and compute. It 
is evident, however, that the data in Fig. 2.7 are closely approximated by 
two straight lines. Again, this is typical of many biological responses to 
temperature. 

Descriptions of the rate of development, such as Fig. 2.7, are the basis 
for determining the time taken to complete a developmental process when 
temperature varies. Assume, for example, that one has measurements of 
soil temperature, and wishes to predict the time required to complete the 
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FIGURE 2.6. Time for development of melon fly (Dacus cucurbitae) eggs at 
different temperatures. 
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FIGURE 2.7. Development rate of melon fly eggs showing the almost linear 
response to temperature. 
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germination stage of a seed. A period of time, usually an hour or a day, is 
chosen and the average temperature over that time period is determined. 
The average temperature determines the rate of germination for that time 
period (Fig. 2.7) and this rate is multiplied by the time period, giving the 
amount of development which has occurred. The total development is 
the sum of the products of rate and time for each time period. The total 
time taken to complete a developmental stage is the time required for the 
sum of the development increments to reach unity. This is similar to the 
problem in physics where we are interested in determining the distance 
traveled by an object which moves at varying speed. There we would 
write 

where r ( t )  is the time-varying rate or speed, and s is the total distance 
traveled. In this analogy, s is like the development stage, and r ( t )  is 
the development rate, which is temperature-dependent and may therefore 
vary in some arbitrary way with time. Since the functional form for the 
rate is generally not known for development calculations (except in the 
trivial case where temperature is constant) we approximate the integral 
with a summation of the products of rate and a finite time increment. 

Example 2.5. Suppose the daily mean temperature is 15" C on day 1, 
20" C on day 2 and 25" C on day 3. Using Fig. 2.7, determine how long 
it would take to complete the egg stage of Dacus cucurbitae. 

Solution. The rates for days 1,2, and 3, estimated from Fig. 2.7, are 0.3, 
0.6, and 0.8 day-'. After two days, 0.3 + 0.6 = 0.9 stages would be 
complete. The remaining 0.1 stage would take 0.1/0.8 1: 0.1 days. The 
total time would therefore be 2.1 days. 

2.7 Thermal Time 

The forgoing example takes the viewpoint that clock or calendar time is 
the correct basis for measuring development, and that the rate of develop- 
ment of an ectotherm (an organism whose temperature is environmentally 
determined) varies depending on environmental temperature. Another 
viewpoint is that there exists a time scale in which the rate of devel- 
opment of organisms is constant, and infyrmation like that in Fig. 2.7 
provides a means of transforming biological time to clock or calendar 
time. Monteith (1977) uses the term thermal time to describe a time scale 
in which the development rate of organisms is constant. It has also been 
referred to as physiological time or p-time. Units of thermal time are 
day-degrees or hour-degrees. Units for p-time are p-days or p-hours. 
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The formal transforms which convert one time scale to the other, for 
an organism whose development rate depends only on temperature, is 

where t is the thermal time and R is the rate of development at temperature 
T (which, in turn, depends on time). The function g is the inverse of R 
and allows, in principle, the conversion of thermal time back to clock 
time. 

In practice, the integral in Eq. (2.6) is always approximated as a sum 
because temperature generally is not a predictable function of time. For 
the usual calculation of thermal time we assume a straight line relation- 
ship between development rate and temperature, such as that shown in 
Fig. 2.7. We also assume that temperatures are always within the range 
Tb . . . T,, where Tb is the base temperature (low temperature at which 
development stops) and T, is the temperature at which the development 
rate is maximum. Thermal time, and therefore organism development, is 
then directly proportional to the sum of products of (I;: - Tb) and the 
length of the time increment, where I;: is the temperature at a particular 
time, with the condition that I;: - Tb > 0. Given these assumptions, the 
equation for thermal time increments is 

Ati = (I;: - Tb)At when I;: > Tb; otherwise Ati = 0. (2.7) 

The time step, At, is chosen so that temperature is fairly constant during 
one time increment. The units of A t  are day-degrees, or hour-degrees, 
depending on the units of At. No thermal time is accumulated when I;: 
is at or below the base temperature. Thermal time is computed as: 

From Fig. 2.7, it can be seen that the rate is 1.35 d-' when the temperature 
is T, = 33" C. The base temperature is Tb = 10" C. At 33" C, the time 
for completion is 111.35 = 0.74 days. The thermal time for completion 
at this constant temperature is 0.74 days, or (33" C - 10" C)/1.35 = 17.0 
day-degrees. When the temperature of the melon fly eggs varies during 
germination, we can use the varying temperature, with Eq. (2.8), to find 
z, since the start of the stage. Once z, reaches 17.0 day-degrees, the 
stage will be complete. 

The inverse operation indicated by the second of Eqs. (2.6) is used 
to find the calendar or clock time required to complete a developmental 
stage. An analytical form of the inverse is not possible except in the trivial 
case where temperature is constant. To find the calendar time required 
for completion of the egg stage in the example just presented, we would 
construct a table of t, and the corresponding tn . We would then enter the 



Temperature 

table at z, = 17.0 day-degrees and find how many calendar days were 
required to reach that value. 

The term heat unit has been used in connection with the day-degree, 
but this is clearly inappropriate. The unit has nothing to do with heat 
or its accumulation, but defines a quantity which bears a simple linear 
relationship to biological time. 

2.8 Calculating Thermal Time from Weather Data 

Reports of thermal time for predicting crop or pest development are gen- 
erally based on calculations from daily maximum (T,) and minimum (T,) 
temperatures using 

h = (Txi: Tni -Tb At. ) 
If the average of the maximum and minimum temperatures is less than 
the base temperature or greater than some maximum temperature, zero is 
added to the sum for that day. Several assumptions are implicit in using 
Eq. (2.9): 

1. the growing region of the plant is at air temperature 
2. the hourly air temperature does not go below the base temperature or 

above the maximum temperature during a day 
3. the process being predicted is linear with temperature between the 

base and maximum temperatures. 

The time increment, At, is taken as one day. The progress toward comple- 
tion of a developmental stage is reported in day-degrees above a specified 
base temperature. Day-degrees required for completion of a developmen- 
tal stage are used to determine completion or progress toward completion 
of development. The role of extreme temperatures in calculation of day- 
degrees is discussed in the next section. Errors from the growing point 
temperature not being at air temperature can be significant. For example, 
the growing point in corn is below the soil surface in early developmental 
stages, and failure to use soil temperature during this time can result in 
errors of five days or more in predictions of tasselleling date. 

The base temperature and thermal time requirements of organisms 
depend, of course, on species and developmental stage. There is some 
evidence, however, that base temperatures may be relatively constant for 
developmental processes within a species and genotype. Angus et al. 
(1981) report the base temperatures of 30 species, including both tem- 
perate and tropical crops. Selected values are shown in Table 2.1. Note 
that the base temperatures fall into two groups, one centered around 2" C, 
and the other around 1 l o  C. The former are representative of temperate 
species such as wheat, barley, pea, etc., and the latter of tropical crops 
such as maize, millet, and sorghum. Base temperatures and thermal 
time requirements can be estimated using the values from Table 2.1, 
but it should be recognized that considerable genotypic variability ex- 
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TABLE 2.1. Base temperature and thermal time requirement 
for emergence of selected temperate and tropical crops (from 
Angus et al. 1980). 

Species Tb (C) day-deg Species Tb (C) day-deg 

wheat 2.6 78 maize 9.8 61 
barley 2.6 79 pearl 11.8 40 

millet 
oats 2.2 91 sorghum 10.6 48 
field pea 1.4 110 peanut 13.3 76 
lentil 1.4 90 cowpea 11.0 43 
rape 2.6 79 pigeon pea 12.8 58 

ists. This variability is very useful in fitting specific genotypes to specific 
environments. 

The thermal time concept has been useful in applications where one 
wishes to predict harvest dates or emergence dates from planting dates, for 
finding varieties (with known thermal time requirements) which are best 
suited to a given climate, and for predicting disease or insect development. 

Example 2.6. Using the weather data in the first three columns of the 
following table, and assuming the seed temperature is the same as the air 
temperature, how long would it take to germinate seed of cowpea which 
was planted on day 188? 

Solution. From Table 2.1, cowpea has a base temperature of 1 lo C, and 
a thermal time requirement of 43 day degrees for emergence. Column 4 
in the table is the quantity in brackets in Eq. (2.9), and column 5 is the 
summation according to Eq. (2.9). Emergence takes place on day 199 
since the thermal time requirement is completed in that day. 
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2.9 Temperature Extremes and the 
Computation of Thermal Time 

Equation (2.9) uses the daily mean temperature to compute the thermal 
time increment for a given day. The temperature during the diurnal cycle 
has varied, however, and may have been outside the linear portion of the 
temperature response function, even though the mean temperature for the 
day was within that range. The correct estimate of thermal time would 
be obtained by shortening At to one hour, and summing hour-degrees to 
determine thermal time for the day. This is often done with insect models, 
where development times are short and good precision is required. Even 
when only daily maximum and minimum temperatures are known, the 
hourly values can be estimated using the interpolation method discussed 
earlier. 

Another problem arises when temperatures are high. The computa- 
tions of thermal time which have just been considered apply only for 
temperatures below Tm, the temperature where the development rate is 
maximum. At temperatures above Tm, Eq. (2.9) predicts that the devel- 
opment rate will continue to increase, while Fig. 2.7 shows that, in fact, 
it decreases. Equation (2.6), however, is very general, and includes any 
possible function of temperature. Therefore, a high temperature cutoff 
could be included, as well as a base temperature, in Eq. (2.7) to obtain: 

Ati = 0 when I;: I Tb 

Ati = ( Z  - Tb)At when Tb < I;: < Tm 
Tx - Ti (2.10) 

Ati = - (T, - Tb) At when Tm I I;: < Tx 
Tx - Tm 

Ati = 0 when Tx I Z .  

Here Tx is the maximum temperature at which development can occur, and 
the high temperature response, as well as the low, has been approximated 
by a linear function. 

2.1 0 Normalization of Thermal Time 

Our choice of the day-degree as a unit for measuring physiological time is 
completely arbitrary, and is used mainly for historical reasons. Empirical 
relationships between accumulated day-degrees and development were 
found long before the physiological basis for these relationships was 
discovered. Since a linear relationship exists between day-degrees and 
development, it is convenient to use the day-degree time scale to measure 
progress of organism development. For a given organism at a given stage 
of development, rate of development is constant when measured in day- 
degrees. However, any other measure of time which is linearly related to 
accumulated day-degrees would work as well, and might sometimes be 
even better. 

One such time scale is obtained by dividing each of the rates in Fig. 2.7 
by the maximum rate (rate at T,). All of the resulting rates then become 



Thermal Time in Relation To Other Environmental Variables 33 

dimensionless and represent the rate of development relative to the rate 
under optimal conditions. If time is considered as advancing at the rate 
of 1 pday per 0.74 day (or phour per hour) under optimum conditions 
(calculated at 33" C from Fig. 2.7), then time advances under suboptimal 
conditions at a rate less than 1.35 pdaylday (remember, pday is a phys- 
iological day). The summation of these, possibly suboptimal pdayslday 
(as determined by temperature), is a direct measure of the accumula- 
tion of calendar time toward completion of a process. If maturity of 
some organism requires 50 days under optimal conditions (50 pdays, 
therefore), then, if the temperature is such that the organism accumulates 
only 0.4 pdayslday (for example 18" C in Fig. 2.7), maturity will require 
5010.4 = 125 calendar days. This normalization of thermal time so that 
the response is dimensionless and ranges from 0 to 1 allows the gener- 
alization of the thermal time concept to other environmental variables. 
This generalization can be an extremely powefil tool for modeling the 
response of organisms to their environment. 

2.11 Thermal Time in   elation To Other 
Environmental Variables 

The development rate concept can be extended to other environmental 
variables which alter the relationship between development and temper- 
ature. For example, the rate of completion of budburst in a number of 
northern temperate tree species depends on winter chilling (Cannell and 
Smith, 1983). Other examples are the vernalization requirement for re- 
productive growth of winter wheat (Porter, 1983; Weir et al., 1984) and 
photoperiod requirements for development in many species. Temperature 
and leaf wetness both affect the development of foliar diseases of plants, 
so a thermal time modified by a leaf wetness factor determines the rate 
of development. 

To predict development when two or more environmental variables 
affect development rate, we need to determine rate curves for each com- 
bination of conditions. This is sometimes quite simple. For example, in 
the infection of a plant by organisms which can only grow when the leaf 
surface is wet, development rate is zero when leaves are dry, and pro- 
gresses at the temperature-determined rate when the leaf surface is wet. 
For photoperiod and chill requirements, the calculations are somewhat 
more involved, since the development rate is dependent on the chill or 
photoperiod. 

As an example, consider a plant which flowers under long-day condi- 
tions, but not when days are short. The photothermal time is computed 
from 
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FIGURE 2.8. Photoperiod response function for a long-day species. 

where Id is the day length. A daylength response function for a long-day 
plant is shown in Fig. 2.8. When the daylength is shorter than eight hours, 
no development occurs. For days longer than 16 hours, development oc- 
curs at the temperature determined rate. For lengths between eight and 
16 hrs, Fig. 2.8 gives the factor to multiply the thermal time increment 
by to determine the advance of photothermal time. 

Chill moderated thermal time is computed similarly. As the plant 
experiences temperatures near freezing, chill units accumulate. A func- 
tion similar to Fig. 2.8, but with chill units as the independent variable, 
determines the rate of accumulation of thermal-chill time. 

The use of relative rates for thermal time and for the chill, moisture, 
and photoperiod factors which moderate thermal time, is attractive for 
several reasons. It provides a generally applicable approach to model- 
ing effects of temperature on development and minimizes the number of 
variables needed to describe the temperature response. It also provides a 
simple bridge from field to laboratory time scales. From laboratory ex- 
periments, the minimum time required for a given developmental process 
to occur may be known. From field temperature (and other environmental 
data, when applicable) the relative rate curves can be used to determine 
the number of field days which are equivalent to one laboratory day at 
optimum conditions. 
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Problems 

2.1. Using the midday temperature data in the following table: 

a. Plot height as a function of mean temperature. 
b. Plot h[(z - d ) / z H ]  (Eq. (2.1)) as a function of mean temperature; 

assume the canopy height is h = 0.15 m. 
c. From the plot in b, find the aerodynamic surface temperature, To. 

Height (m) Mean air temperature (C) 

d. If u* = 0.2 m s-', what is the sensible heat flux, H? 

2.2. Find the damping depth, D, from the data in Fig. 2.5. 

2.3. If the daily maximum and minimum soil temperatures at the soil 
surface are 35" C and 15" C, respectively for several consecutive 
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days, plot the maximum and minimum temperatures as a function of 
depth to 30 cm for a soil with damping depth of 10 cm. 

2.4. Using the weather data in the following table, predict the date of 
flowering of spring wheat planted on day 119 if flowering requires 
900 day-degrees fiomplanting with a base temperature of 3" C. How 
much later will flowering occur if planting is delayed to day 150? 

day Tx Tn 

119 5. -0.6 
120 11.7 1.7 
121 21.1 4.4 
122 18.9 3.3 
123 17.8 3.9 
124 6. -1.1 
125 10.6 -1.7 
126 14.4 1.7 
127 17.8 5.6 
128 13.9 2.2 
129 12.8 2.2 
130 6. -1.7 
131 15. -1.1 
132 18.3 5. 
133 17.8 2.8 
134 21.1 9.4 
135 20.6 9.4 
136 17.8 7.2 
137 21.7 10. 
138 15.6 4.4 
139 13.9 3.3 
140 16.7 5. 
141 21.7 5. 
142 23.9 10. 
143 19.4 5. 
144 17.8 5.6 
145 23.9 11.1 
146 25. 6.7 
147 15. 0. 
148 12.2 2.8 
149 12.2 4.4 
150 16.1 3.3 
151 18.3 6.7 
152 22.2 5.6 

day Tx Tn 

153 18.9 6.1 
154 17.8 5.6 
155 15. 4.4 
156 13.3 6.7 
157 14.4 5.6 
158 15.6 3.9 
159 17.2 1.7 
160 20. 6.1 
161 23.9 6.1 
162 25.6 6.7 
163 27.8 8.9 
164 19.4 11.7 
165 17.2 12.2 
166 22.8 10.6 
167 27.8 11.1 
168 28.3 11.7 
169 28.3 12.8 
170 28.9 8.9 
171 30.6 11.1 
172 31.7 13.3 
173 26.1 13.9 
174 27.8 11.7 
175 28.9 14.4 
176 29.4 12.2 
177 22.2 15. 
178 28.9 12.8 
179 21.1 11.7 
180 14.4 12.2 
181 19.4 11.7 
182 23.3 13.3 
183 16.7 8.3 
184 21.1 9.4 
185 18.3 7.8 
186 18.3 8.3 

day Tx Tn 

187 19.4 6.1 
188 22.2 10.6 
189 22.2 9.4 
190 21.7 12.2 
191 25. 10. 
192 27.2 11.1 
193 28.9 16.1 
194 27.2 11.1 
195 29.4 12.2 
196 18.3 6.1 
197 14.4 6.1 
198 18.3 3.9 
199 23.9 11.1 
200 28.3 13.3 
201 28.3 12.8 
202 30. 13.3 
203 26.1 3.9 
204 22.8 3.9 
205 25.6 5. 
206 28.9 9.4 
207 31.1 10.6 
208 32.2 9.4 
209 33.9 15. 
210 33.9 13.3 
211 34.4 16.1 
212 34.4 12.8 
213 28.9 8.3 
214 22.8 8.9 
215 22.2 11.1 
216 21.7 11.1 
217 24.4 7.8 
218 27.8 8.9 
219 31.7 11.7 
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Terrestrial organisms live in a gaseous medium composed mostly of nitro- 
gen and oxygen. Water vapor is present in varying amounts, and carbon 
dioxide and other gases, in trace amounts. Organisms exchange oxygen, 
carbon dioxide, and water vapor with their surroundings. Carbon dioxide 
is a substrate for photosynthesis and oxygen is a product; while oxygen 
is a substrate for respiration and carbon dioxide is a product. Exchange 
of these gases with the environment is therefore a requirement for life. 
Water vapor almost always moves from the organism to the environment. 
The humidity of the organism is near 100 percent, while the surround- 
ings are nearly always much drier. The organism must remain in a highly 
hydrated state in order for biochemical reactions to occur, so the constant 
loss of water is a threat to survival, and frequent access to liquid water is 
a necessity for most terrestrial organisms. The intake of liquid water and 
the loss of water vapor to the environment are usually the most important 
components of the water budget of an organism. 

Water loss is generally viewed as detrimental to the organism, though 
it may have some benefit in the circulation system of plants. It does, 
however, have a definite benefit when we consider the energy balance of 
the organism. Environmental temperatures are often higher than can be 
tolerated by biological systems. If there were not some mechanism for 
cooling the organism, it would perish. As water evaporates, roughly 44 
kilojoules of energy are required to convert each mole to the vapor state. 
This is called the latent heat of vaporization. It is 580 times the energy 
required to change the temperature of one mole of water by one Celsius 
degree, and therefore represents an enormous sink for energy in the or- 
ganism environment. Evaporative cooling is a natural way of controlling 
temperatures of organisms in hot environments. The amount of cooling 
available to the organism depends on the concentrations of water vapor 
at the organism surface and in the environment, and on the conductance 
to water vapor of the organism surface and boundary layer. This chap- 
ter discusses terminology for specifying gas concentrations and provides 
information about concentrations of gases in terrestrial environments. 
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3.1 Specifying Gas Concentration 

Concentrations of the main atmospheric constituents are often expressed 
as percentages or volume fractions. For mainly historical reasons, which 
have to do with methods of measurement, water vapor concentration is 
expressed in a number of different ways. For reasons that will become 
clearer as we get farther into the subject, there is a substantial advantage 
to expressing concentrations of all gases in terms of mole fraction (moles 
of substance per mole of air), and fluxes as moles per square meter per 
second. The relationship between density or concentration and amount 
of substance j in a gas is 

where n j  is the number of moles, V is the volume of gas, and Mi is the 
molecular mass. Since the mole fraction of j is the ratio of moles of gas 
j to moles of air: 

Here, Ma is the molecular mass of air and Mj is the molecular mass of 
component j. Table 3.1 gives molecular masses for the main constituents 
of the atmosphere. 

The molar density, or ratio pj/Mj, is the same for all gasses. At 
standard temperature and pressure (STP; 0" C and 101.3 kPa) the mo- 
lar density of any gas is 44.6 mol m-3 (one mole of any gas occupies 22.4 
liters). The molar density of gas will show up a lot in our equations, so we 
give it the special symbol j3. The variation of molar density with pressure 
and temperature is given by the Boyldharles law which states that the 
volume of a gas is inversely proportional to its pressure (p) and directly 
proportional to its Kelvin temperature (T). Using the Boyldharles law 
the molar density of air can be computed from: 

TABLE 3.1. Properties of the major constituents of air. 
- - 

Gas Molecular Mol fraction Density at STP 
Mass (glmol) in air (kg m-3) 

Nitrogen 28.01 0.78 1 .250 
Oxygen 32.00 0.2 1 1.429 
Carbon dioxide 44.01 0.00034 1.977 
Water vapor 18.02 0 to 0.07 0.804 
Air 28.97 1.00 1.292 
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A middle range temperature for biophysical calculations is 293 K (20" C), 
giving $ = 41.4 mol m-3 at sea level (101.3 Ha). 

The relationship between volume, temperature, and pressure for a 
perfect gas is 

where pi is the partial pressure of gas j, and R is the gas constant, 8.3 143 J 
mol-I K-'. Substituting Eq. (3.4) into Eq. (3.2) gives 

so the mole fraction of a gas can be calculated as the ratio of its partial 
pressure and the total atmospheric pressure. 

One more relationship between mole fraction and other measures is 
useful. If two gases with initial volumes Vl and V2 are mixed to make 
a volume Va and the pressure is the same on all three volumes, then 
the volume fraction, Vl/ Va is equal to the mole fraction, nlln,. Gas 
concentrations in air are often expressed as percentages, parts per million 
(ppm), or parts per billion (ppb) on a volume basis (volume of the pure 
gas divided by the volume of air). It can be seen here that these measures 
are directly related to the mole fraction. 

One more version of the perfect gas law is also useful. The density 
of a gas is the molecular mass multiplied by the number of moles, and 
divided by the volume occupied by the gas (Eq. (3.1)). Substituting this 
into Eq. (3.4) gives the relationship between the partial pressure of a gas 
and its concentration: 

Example 3.1. In 1985 the average concentration of C02 in the atmo- 
sphere ofthe earth was estimated to be 344 ppm. What is the mole fraction, 
partial pressure, and density (concentration) of atmospheric C02 in air at 
20" C? 

Solution. Parts per million (ppm) means volumes of C02 in lo6 volumes 
of air. Since the volume ratio is equal to the mole fraction, 344 ppm is 
the same as 3.44 x moles/mole or 344p mol/mol. Using Eq. (329, 
pc = Ccpa.Ifp, = 101 kPa,thenpc = 3 . 4 4 ~  x 1.01 x lo5 Pa = 
35 Pa. For density Eq. (3.6) is used and rearranged to get 

pCMc 35 pa x 44 
C - - P - - -  

g = 0.63 - . 
x 293K RT 8.31- m3 

mol K 
To get the units to divide out, you may need to refer to Table I .2. Note that 
a Pascal is a Newton per square meter, and that a joule is a Newton-meter. 
A Pascal is therefore equivalent to a joule per cubic meter. 
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3.2 Water Vapor: Saturation Conditions 

If a container of pure water is uncovered in an evacuated, closed space, 
water will evaporate into the space above the liquid water. As water evap- 
orates, the concentration of water molecules in the gas phase increases. 
Finally, an equilibrium is established when the number of molecules es- 
caping from the liquid water equals the number being recaptured by the 
liquid. If the temperature of the liquid was increased, the random kinetic 
energy of the molecules would increase, and more water would escape. 
The equilibrium vapor pressure, established between liquid water and wa- 
ter vapor in a closed system is known as the saturation vapor pressure for 
the particular temperature of the system. The saturation vapor pressure 
is the highest pressure of water vapor that can exist in equilibrium with 
a plane, free water surface at a given temperature. The saturation vapor 
pressure is shown as a function of temperature in Fig. 3.1. Since the 
influence from any other gases present in the space above the water is 
negligible, the vapor pressure above the water surface is essentially the 
same whether the closed space is initially evacuated or contains air or 
other gases. The symbol e is used to represent the vapor pressure of wa- 
ter, and the saturation vapor pressure is denoted by e, (T) ,  indicating that 
the saturation vapor pressure is determined by temperature. Tables giving 
saturation vapor pressure as a function of temperature can be found in 
List (1971) and in Table A.3 of the Appendix of this book. The mole frac- 
tion, which we frequently use in future computations, depends on both 
temperature and pressure. It is computed using Eq. (3.5), by dividing 
e, (T) by the atmospheric pressure. The main variable determining atmo- 
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FIGURE 3-1. Saturation vapor pressure of air as a function of temperature. 
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spheric pressure is elevation. A relationship, which is accurate enough 
for biophysical calculations, is 

p, = 101.3 exp (-A) 
8200 

where A is the altitude in meters above sea level and pa is in kPa. 
A convenient, empirical equation (with a close connection to the 

Clausius Clapeyron equation from thermodynamics) for computing the 
saturation vapor pressure from temperature is the Tetens formula (Buck, 
198 1): 

es(T) = a exp - 
( T " f c )  

where T is the Celsius temperature. The constants a,  b, and c  can be 
chosen to optimize the fit of the equation for various ranges of data. For 
environmental biophysics applications the constants are a = 0.61 1 kPa, 
b = 17.502, and c = 240.97" C. Equation (3.8) can be used in place 
of tables for finding the saturation vapor pressure. While there are slight 
differences between the values from Eq. (3.8) and the more generally 
accepted values in List (1971), the differences are not measurable, nor 
are they sigmficant for biophysical computations. The Tetens formula can 
also be used to predict the vapor pressure over ice (which is different from 
the vapor pressure over water). The coefficients for ice are b = 21.87 
and c = 265.5" C. 

The slope of the saturation mole fraction with respect to tempera- 
ture is also used frequently in computations. It is obtained by dividing 
the slope of the saturation vapor pressure function by atmospheric pres- 
sure. The slope of the saturation vapor pressure function is obtained by 
differentiating Eq. (3.8) to obtain 

The slope of the saturation mole fraction is represented by s, and is given 
by 

s = A l p , .  (3.10) 

Example 3.2. Find the saturation vapor pressure at 0, 10,20, and 30" C, 
and the mole fraction of water vapor in saturated air at sea level for each 
of these temperatures. 

Solution. When T = 0, exp(0) = 1, so Eq. (3.8) gives es(0) = 
a = 0.61 1 kPa. The others require a little more computation, but, 
using Eq. (3.8) they give es(lO) = 1.23 kPa, es(20) = 2.34 kPa, 
and es(30) = 4.24 kPa. Comparing these to the values in Table A.3 
shows them to agree to the number of sigmficant digits shown here. 
The pressure at sea level is 101 kPa, so the mole fraction at 0" C is 
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C, = 0.611 kPa/lOl kPa = 0.006. The other mole fractions are 0.012, 
0.023, and 0.042 mol/mol or 6, 12,23, and 42 mmol/mol. 

There are a couple of points from the example that are worth not- 
ing. Vapor pressures and mole fractions are used in many calculations 
throughout this book, so it would be a good idea to find some way of 
remembering approximate values for these quantities at saturation. Note 
that the vapor pressure approximately doubles for each 10" C temperature 
increase. Exactly doubling would give 0.6, 1.2, 2.4, and 4.8 kPa for the 
four temperatures. All but the last one are within a few percent of the ac- 
tual value, and it is only a little over ten percent high. If you can remember 
the vapor pressure at zero, you can therefore estimate saturation vapor 
pressures at higher temperatures. The other point to note is that conversion 
to mole fraction at sea level involves division by a number close to 100. 
The mole fraction, expressed as a percent, is therefore nearly the same 
as the vapor pressure. This is also the fraction of a saturated atmosphere 
made up of water vapor at the indicated temperature. The mole fraction, 
expressed in mmol/mol is just the vapor pressure in kPa multiplied by 10 
(and is equal to the vapor pressure in millibars). 

3.3 Condition of Partial Saturation 

In nature, air is seldom saturated, so we need to know more than just the 
temperature to specify its moisture condition. Partial saturation can be 
expressed in terms of ambient vapor pressure or mole fraction, relative 
humidity, vapor deficit, dew point temperature, or wet bulb temperature. 
Ambient vapor pressure is simply the vapor pressure that exists in the air, 
as opposed to saturation vapor pressure, which is the maximum possible 
vapor pressure for the temperature of the air. Relative humidity is the ratio 
of ambient vapor pressure to saturation vapor pressure at air temperature: 

Relative humidity is sometimes multiplied by 100 to express it as apercent 
rather than a fraction, but it is always expressed as a fraction in this book. 

The relationship between saturation vapor pressure and ambient vapor 
pressure at various humidities is shown in Fig. 3.2. The curved lines, 
labeled on the right, show vapor pressures at humidity increments of 0.1 
for temperatures from 0 to 40° C. 

The vapor deficit is the difference in vapor pressure or mole fraction 
between saturated and ambient air: 

D = es(T,) - e, = es(T,)(l - h,) (3.12) 

where the second relation follows from Eq. (3.1 1). The vapor deficit at any 
temperature and relative humidity is the difference, in Fig. 3.2, between 
the saturation line (h, = 1) at T, and the line for the ambient relative 
humidity. 

The dew point temperature is the temperature at which air, when cooled 
without changing its water content or pressure, just saturates. In other 
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P FIGURE 3.2. Vapor pressure-temperature-relative humidity-wet bulb temperature diagram. Wet bulb lines are for sea level pressure. w 
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words, the saturation vapor pressure at dew point temperature is equal to 
the ambient vapor pressure: 

es(Td) = ea. (3.13) 

This can also be determined from Fig. 3.2 by following horizontally from 
the ambient vapor pressure, and reading the temperature at the intersection 
of the horizontal line and the h, = 1 line. It can be obtained more 
precisely from Table A.3, and by inverting Eq. (3.8): 

where the constants are the same as in Eq. (3.8). 
Another important moisture variable is wet bulb temperature, Tw. To 

find the wet bulb temperature, determine the temperature drop which 
could be achieved by adiabatic evaporation of water into air (adiabatic 
meaning "without heat exchange"). Air is cooled by evaporating water 
into it, but the evaporation of water into the air raises its vapor pressure. 
Since the change in heat content of the air due to changing its temperature 
must equal the latent heat of evaporation for the water evaporated into 
the air, we can write: 

where h is the latent heat of vaporization of water (44 Wmol) and c, 
is the specific heat of air (29.3 J mol-' K-I). Equation (3.15) is most 
often written in terms of vapor pressure and used for determining vapor 
pressure from wet bulb and dry bulb temperatures: 

Here, y = c,/h is called the thermodynamic psychrometer constant. It 
has a value of 6.66 x C-' with a slight temperature dependence 
(O.Ol%/C) due to the temperature dependence of A. 

A psychrometer is an instrument consisting of two thermometers. 
One thermometer measures the air temperature. The second thermometer, 
whose "bulb" is covered with a wet cotton wick, measures the wet bulb 
temperature, Tw . Equation (3.16) is used to determine the vapor pressure 
of the air from these measurements. Clearly, a real psychrometer is not an 
adiabatic system since both heat and water vapor are exchanged with the 
surrounding air, and the thermometers absorb and emit radiation. Later in 
the book the tools needed to analyze a real psychrometer are developed, 
but the result of such an analysis yields an equation like Eq. (3.16) with 
an apparent psychrometer constant y *. For an adequately ventilated psy- 
chrometer with a good wick and radiation shield the value of the apparent 
psychrometer constant is close to the thermodynamic constant, but poorly 
designed or ventilated psychrometers can have much lower constants. 

Equation (3.16) defines the family of straight, diagonal lines shown in 
Fig. 3.2. The wet bulb temperatures are labeled along the h, = 1 line. 
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Either Eq. (3.16) or Fig. 3.2 can be used to find vapor pressure from wet 
and dry bulb temperatures, later we give examples of both. Finding wet 
bulb temperature from vapor pressure and air temperature using Fig. 3.2 
is also easily done. Finding T, from the psychrometer equation, however, 
is somewhat more challenging, since Tw appears in the linear term and 
implicitly in e,(Tw). There is no explicit solution to this equation, but 
a solution can be found by standard mathematical methods for solving 
nonlinear equations. 

Example 3.3. When air temperature is 23" C and vapor pressure is 
1 . 1  kPa, use Fig. 3.2 to find relative humidity, dew point temperature, 
and wet bulb temperature. 

Solution. Enter Fig. 3.2 at T = 23" C and ea = 1 . 1  kPa. This point 
is just below the line for h, = 0.4, so the humidity is estimated to be 
0.39. The dew point temperature is the intersection of the h, = 1 line and 
e, = 1 . 1  kPa. The dew point temperature is therefore around 8" C. To find 
the wet bulb temperature, place a straight edge on Fig. 3.2 with the edge 
parallel to the wet bulb lines and passing through the point T = 23" C, 
ea = 1 . 1  H a .  Read the temperature on the scale along the h, = 1 line, 
it is approximately 14.5" C. Note that the wet bulb temperature always 
lies between the air temperature and the dew point temperature unless the 
humidity is 1 ;  then they are all equal. 

Example 3.4. Find the vapor pressure and vapor mole fraction at the 
surface of melting snow at 1300 m elevation. 

Solution. The temperature of melting ice and snow is 0" C. Since the 
surface is pure water, the vapor pressure at the surface is the saturation 
vapor pressure for that surface temperature. From Table A.3 the saturation 
vaporpressure at 0" C is 0.6 1 1  kPa. Using Eq. (3.7), the pressure at 1300 m 
elevation is 101.3 exp(- 1300/8200) = 86 kPa. The vapor mole fraction 
is C,  = 0.61 1 kPa/86 kPa = 0.007 mol/mol or 7 mmol/mol. 

Example 3.5. A psychrometer gives an air temperature of 30" C and 
a wet bulb temperature of 19" C. Use the psychrometer equation and 
other formulae to find the vapor pressure, relative humidity, dew point 
temperature, and vapor deficit of the air. Assume the measurement is 
made at sea level. 

Solution. To use the psychrometer equation the saturation vapor pressure 
at wet bulb temperature needs to be known. Table A.3 gives e,(Tw) = 
2.20 kPa. The saturation vapor pressure at air temperature is also needed 
to find the humidity. Again, from Table A.3 it is e, (T,) = 4.24 kPa. Using 
the psychrometer equation (Eq. (3.16)) gives 
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Now, using Eq. (3.1 I), h, = 1.46 kPa14.24 Wa = 0.345. The vapor 
deficit (Eq. (3.12)) is D = 4.24 kPa - 1.46 kPa = 2.78 kPa. The dew 
point temperature can be obtained from Table A.3 or from Eq. (3.14). 
In Table A.3, follow down the vapor pressure column until you find the 
vapor pressure just smaller than 1.46 Ha .  This is at 12" C. The dew 
point temperature therefore lies between 12" C and 13" C. The difference 
between the value at 12" C and 1.46 kPa is 58 Pa; the difference between 
the value at 12 and 13" C is 95 Pa. Our value of 1 A6 kPa is therefore 58/95 
or 0.6 of the way between 12 and 13" C. The dew point temperature is 
therefore Td = 12.6' C. Using Eq. (3.14): 

Example 3.6. The vapor pressure of air at a ski resort is 0.4 kPa. A 
machine to make artificial snow emits water droplets which quickly cool 
to the wet bulb temperature. At what air temperature will the droplets just 
reach freezing temperature at an altitude of 2400 m? 

Solution. Ice melts at 0' C, but often cools a few degrees below this tem- 
perature before freezing (super cools). For this problem we will assume a 
freezing temperature of -2" C. Rearranging the psychrometer equation 
(Eq. (3.16)) to find air temperature gives 

es(Tw) - ea 
Ta = Tw + 

YPa 
0.53kPa - 0.4kPa 

= 0.6"C. 
= -2 + 6.67 x ~o-~c- '  x 0.75 x lOlkPa 

Therefore, expect the droplets to start freezing at an air temperature 
slightly above zero. 

Example 3.7. A humidity sensor at air temperature reads 0.23 when 
the air temperature is 16" C. What is the vapor pressure, dew point 
temperature, and wet bulb temperature? 

Solution. Entering Fig. 3.2 at the T = 16" C line and h, = 0.23 gives 
a vapor pressure of about 0.4 kPa. The wet bulb temperature is obtained 
by moving along a line through the vapor pressure, temperature point, 
parallel to the psychrometer lines. It is approximately 7.5" C. The dew 
point temperature cannot be obtained from Fig. 3.2 because it does not 
go low enough. Table A.3 also fails to go low enough for this problem. 
Before turning to the formula to obtain this value, try calculating a more 
precise value for the vapor pressure. From Table A.3, the saturation vapor 
pressure at 16" C (air temperature) is 1.82 H a .  Rearranging Eq. (3.1 1) to 
compute vapor pressure gives: 



Spatial and Temporal Variation of Atmospheric Water Vapor 

TABLE 3.2. Comparison of various measures of moisture in 
air for air temperature = 20" C, relative humidity = 0.5, and 
atmospheric pressure = 100 Ha.  

Now, using Eq. (3.14) the dew point temperature is obtained: 

Three other quantities are commonly used by meteorologists to de- 
scribe vapor concentration in air. These are the absolute humidity, the 
mixing ratio, and the specific humidity. The absolute humidity, also 
known as the vapor density, is the mass of water vapor per unit vol- 
ume of air. It is related to the vapor pressure by Eq. (3.6). For water vapor 
this becomes 

where ea has units of Pa. If ea has units of kPa, and p, has units of 
gm-3, then for T = 293 K, p, = 7.4ea. 

The mixing ratio r is the mass of water vapor per unit mass of dry air. 
It can be computed from the mole fraction of water vapor using 

The specific humidity q is the mass of water vapor divided by the mass 
of moist air, and is related to the mole fraction by: 

The units of r and q usually are gkg. Table 3.2 compares values of r and 
q with sample values of the other variables representing moisture in air. 

3.4 Spatial and Temporal Variation of 
Atmospheric Water Vapor 

The spatial and temporal patterns of vapor pressure in the atmosphere 
resemble those given in Ch. 2 for temperature. During the day, vapor 
pressures are highest near a soil or plant surface and decrease with height. 
At night, vapor pressures tend to be lowest near the surface and increase 
with height. Vapor pressures tend to be a bit higher in the day than at night 
and typically reach a minimum at the time temperature is at the minimum. 
As with temperature, the surface acts as a source of water vapor in the day 
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and a sink at night (when condensation and dew formation occur), and is 
therefore responsible for the shape of the vapor pressure profiles. Because 
the surface acts as a source or sink, and water vapor is transported in the 
atmosphere, there also exist high frequency random fluctuations in vapor 
pressure like those for temperature shown in Fig. 2.4. 

While these patterns are easily demonstrated, the magnitude of spatial 
and temporal vapor pressure variation is much smaller than for temper- 
ature, and is usually small enough that it can be ignored in comparison 
with other sources of uncertainty in the measurements. If only the aver- 
age vapor pressure for a day is known, the best estimate of hourly vapor 
pressures is that they equal the average for the day. Variation of vapor 
pressure with height can be described by an equation similar to Eq. (2. l), 
so a log plot of two or more measured vapor pressures with height would 
allow extrapolation or interpolation to other heights, as was done with 
temperature. However, the changes in vapor pressure with height are rel- 
atively small, so vapor pressures in an organism microenvironment are 
similar to the the vapor pressure at measurement height. 

Not all measures of atmospheric moisture are as well behaved as va- 
por pressure or mole fraction, however. Figure 3.3 shows the diurnal 
variation in relative humidity and vapor deficit for the temperatures in 
Fig. 2.2, assuming the vapor pressure is constant throughout the day at 
1 .OO kPa (Td = 7' C). Note that the humidity is near one and the vapor 
deficit is near zero early in the morning. In the early afternoon the hu- 
midity is around 0.3 and the vapor deficit is 2 kPa. All of this variation is 

0 6 12 18 24 

Time of Day 

FIGURE 3-3. Diurnal variation in relative humidity and atmospheric vapor deficit 
for the temperature variation in Fig. 2.2. Vapor pressure is assumed to be constant 
throughout the day at 1 .OO kPa. 
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brought about by the change in temperature, with no change in the vapor 
concentration in the air. 

It is perhaps unfortunate that one of the most common measurements 
of atmospheric moisture is relative humidity. The measurement itself is 
essentially useless as an environmental variable except as a means, along 
with air temperature, of obtaining the vapor pressure, mole fraction, or 
dew point temperature. Some people compute and report averages of 
humidity over time periods of a day or longer. It should be clear from 
Fig. 3.3 that an average humidity is worse than meaningless. In addition 
to failing to communicate any useful information by itself, averaging 
individual humidity measurements destroys any possibility of obtaining 
useful information from the original data because the average humidity 
depends on the pattern of temperature variation (which is lost in the 
averaging process). It is best to immediately convert humidity data to 
vapor pressure or dew point. Then record, average, and process these 
data. 

Averaging the vapor deficit is a slightly different matter. We show later 
that the vapor deficit gives an estimate ofthe driving force for evaporation, 
and is useful in relating transpiration and biomass production in plant 
communities. The average vapor deficit for the atmosphere is therefore 
a useful number, but it can be estimated reliably from average vapor 
pressure and temperature. 

3.5 Estimating the Vapor Concentration in Air 

Reliable measurements of atmospheric moisture are difficult to obtain, 
but estimates of the vapor pressure, which are quite reliable, are rela- 
tively easy to make. In the absence of airmass changes and advection, 
the vapor pressure in the air is relatively constant throughout the day and 
from day to day. It also varies little between indoors and outdoors. Figure 
3.3 shows the humidity going to nearly 1.0 at the time of minimum tem- 
perature. This behavior is typical of all except arid, summer conditions. 
Therefore, the minimum daily temperature can often be taken as the dew 
point temperature. 

Example 3.8. Summer minimum temperatures at locations in the Mid- 
western U.S. can be around 20" C, while in the arid Southwest they are 
10" C or below. Compare the vapor pressure of the two locations. 

Solution. Assuming the minimum temperature equals the dew point tem- 
perature, the vapor pressure can be looked up either in Fig. 3.2 or Table 
A.3. At 20" C it is 2.3 kPa and at 10" C it is 1.2 Ha .  That difference 
makes an enormous difference in human comfort when temperatures are 
in the high 30s (C). 
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Example 3.9. On a particular foggy, cold day the outdoor temperature 
is -20" C. Compare the humidity outdoors with the humidity in a heated 
building where air temperature is 22" C. 

Solution. If there is fog, the humidity outdoors must be 1.0. In order to 
find the humidity indoors the vapor pressure of the air and the saturation 
vapor pressure at the indoor air temperature are needed. Assume that the 
indoor and outdoor vapor pressures are equal. Neither our figure nor our 
table give values at -20" C, so we use Eq. (3.8): 

17.502 x (-20) 
e, = 0.611 exp = 0.125 kPa. 

240.97 - 20 

The saturation vapor pressure at 22" C is 2.64 kPa (Table A.3), so the 
indoor humidity is h, = 0.12512.64 = 0.05. Note that the same amount 
of vapor in the air gives very different humidities in the two environments. 

Vapor pressure or humidity normally is measured in weather stations. 
Tyl?ically such measurements are taken 1.5 to 2 m above the ground in an 
open area. The humidity of microenvironments in plant canopies or near 
leaves can be quite different. For example, a tiny mite living on a corn leaf 
may be experiencing a relative humidity of 70 percent when the humidity 
measurement at an adjacent weather station indicates 30 percent. This 
can occur because the mite is small enough to be reside between the leaf 
surface and the top of the boundary layer surrounding the leaf, so that 
moisture from the transpiration stream leaving the stomata humidifies 
the mite environment. This humidification of leaf boundary layers is also 
important to transpiration because the conductance of the leaf surface 
(stomata1 conductance) is influenced by the humidity in this leaf boundary 
layer. Humidity can vary greatly among various microenvironments, and 
we study such effects in following chapters. 
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Problems 

3.1. A psychrometer gives air temperature of 34" C and wet bulb temper- 
ature of 22" C. Find the vapor pressure, the vapor mole fraction, the 
dew point temperature, the relative humidity, and the vapor deficit. 
The altitude of the site is 1200 m. 
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3.2. On a hot, humid day your skin surface can be at 36" C and covered 
with perspiration. If the perspiration has the same vapor pressure as 
pure water, what is the vapor pressure at your skin surface? 

3.3. You decide to calibrate a relative humidity sensor at a value of 0.5 in 
a 0.1 m3 container. Assuming no water is adsorbed on the walls of 
the container, how much liquid water must be evaporated into dry air 
to achieve this humidity at container temperatures of 10 and 40" C? 

3.4. The method in problem 3.3 is not very useful for calibrating humidity 
sensors. A better method is to bubble air through water at controlled 
temperatures. Suppose air is bubbled through water at 10" C, and 
then passed into the container with the humidity sensor, which is at 
20" C. What is the relative humidity of the air in the chamber? If the 
air and humidity sensor were really at 2 1" C when you thought they 
were at 20" C, how much error would this cause in your calibration? 

3.5. If the outdoor minimum temperature were -15" C on a particular 
day, estimate the relative humidity in a 22" C laboratory on that day. 

3.6. The vapor pressure of the air you breathe out is the saturation vapor 
pressure at body temperature (37" C). If the air you breathe in is at 
20" C and 0.2 relative humidity, you take 15 breaths per minute, and 
each breath has a volume of 1 liter, how many 250 ml. glasses of 
water are required per day to replenish this water loss? 

3.7. If air is at 15" C and 0.6 relative humidity, find the absolute humidity 
(or vapor density), the specific humidity, and the mixing ratio. 
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Almost all of the water in living organisms is liquid, rather than vapor. 
In addition, water is taken up from the organism environment mainly in 
the liquid phase. Good physical descriptions of water in the liquid phase 
are necessary to understand liquid-phase water exchange and organism 
response. The energy state of liquid water can also affect the vapor pres- 
sure and concentration of water at evaporating surfaces. Vapor exchange 
is therefore also influenced by the state of the liquid water. 

4.1 Water Potential and Water Content 

Two types of variables are required to describe the state of matter or 
energy. One describes the amount, while the other describes the quality 
or intensity. For example, the thermal state of a substance is described 
in terms of its heat content and its temperature. While the two variables 
are related (the higher the temperature of a substance, the higher the heat 
content), they are not equivalent. The heat content depends on the mass, 
specific heat, and temperature of the substance, and gives no indication of 
which direction heat will flow ifthe object is placed in contact with another 
object. The temperature of an object specifies the intensity or quality of 
the heat, and temperature differences relate directly to direction and rate 
of heat flow. 

Variables like temperature, which describe intensity of quality are 
called intensive variables, while variables describing amount are called 
extensive variables. Temperature is intensive while heat is extensive. To 
refer to thermal time as "heat units" is a confusion of intensive and 
extensive variables. 

Describing the state of water in a system also requires the use of inten- 
sive and extensive variables. The extensive variable is familiar to most, 
and is called the water content. The intensive variable, called the water 
potential, is less familiar. Like temperature, it determines the direction 
and rate of water flow. As with temperature, there is often a relationship 
between the water content and the water potential of a substance, though 
it is always much more complicated than is the case for temperature. The 
important thing to realize is that water in soil, or in the tissues of living 
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things, is not like the water in a glass. It is bound by the tissue or soil 
matrix, diluted by solutes, and sometimes is under pressure or tension. 
Its energy state is therefore quite different from that of water in a glass. 

The water content is simply the ratio of the volume of water in a 
material to its total volume, or the ratio of mass of water to dry or wet 
mass of the material. Different bases are used as the standard in different 
disciplines, and all are called water content, so it is easy to make mistakes 
if one is not careful. In this book water content is defined as: 

where V is the volume, m is the mass, and subscripts w ,  t, and d refer to 
water, total, and dry volume or mass. We call 9 volumetric water content 
and w the mass water content. These are related by 

where pb is the bulk density 

Water potential is defined as the potential energy per mole, per unit mass, 
per unit volume, or per unit weight, of water, with reference to pure 
water at zero potential. In thermodynamic terms, the energy per mole is 
the molar Gibbs free energy of the water in the system. A gradient of 
the water potential is the driving force for liquid water movement in a 
system. 

As indicated, several sets of units are in use to describe water potential. 
For consistency with the rest of this book, we should use energy per mole, 
but this has not been used elsewhere, and may be completely unfamiliar to 
readers. Our preference is for energy per unit mass (Jkg). The units clearly 
show energy and mass, and, unlike volume, the mass does not vary with 
the density of the water. Energy per unit volume (Urn3) is dimensionally 
equivalent to pressure (kPa or MPa). These units are frequently used for 
water potential, but fail to indicate a relationship to specific energy and 
have a less sound basis for the computation (the specific volume of water 
varies with density and is therefore dependent on temperature and binding 
energy). While these are minor objections to the use of pressure for water 
potential, it should be pointed out that there certainly are no advantages to 
the use of pressure units, and the mass-based units have historical priority. 
Energy per unit weight (J/N) is dimensionally equivalent to the height of 
a water column (m) in a gravitational field. It is used mainly in soil water 
flow problems where height of a physical water column is a convenient 
reference for other potentials. If the density of water is assumed to be 1 
~ g / m ~ ,  and the gravitational constant is 9.8 m s - ~ ,  then 
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In this book we use Jlkg, but the reader can consider those equivalent to 
kPa if pressure units are more familiar. 

The water potential is made up of several components. The total 
potential is usually written as the sum of the components: 

where the subscripts, g, m, p, and o are for gravitational, matric, pressure, 
and osmotic components. While each of these components (and others 
that could be defined) can contribute to the total potential, there are many 
situations where only one or two of the component potentials are active. 

The gravitational potential is the potential energy of water as a result 
of its position in a gravitational field. A reference height must be specified 
in order to compute a gravitational potential. The gravitational potential 
is then: 

where g is the gravitational constant (9.8 m sV2) and h is the vertical dis- 
tance fromthe reference height to the location where potential is specified. 
Above the reference h is positive and below the reference it is negative. 

The matric potential arises from the attraction between water and soil 
particles, proteins, cellulose, etc. Adhesive and cohesive forces bind the 
water and reduce its potential energy compared to that of free water. 
For any substance that imbibes water there exists a relationship between 
water content and matric potential. This relationship is called the moisture 
characteristic. Figure 4.1 shows moisture characteristics for soils with 
three different textures. Most of the water in the clay is held very tightly 
(at low potential) because the large surface area of the clay is able to bind 
the water. Most of the water in the sand is held loosely (at high potential) 
because the sand matrix is ineffective in binding water. Similar curves 
could be made for cellulose, protein, etc., and they would have similar 
shapes. Tracy (1976) obtained a moisture characteristic for a whole frog. 
Note that the matric potential is always negative or zero. An empirical 
equation that closely approximates most moisture characteristics over a 
wide range of matric potentials is: 

where w is the water content and a and b are constants determined from 
data. 

The pressure potential arises as a result of an applied hydrostatic or 
pneumatic pressure. Examples of this potential are the blood pressure in 
an animal, the water pressure under a water table in the soil, the turgor 
pressure inside plant cells, or the air pressure inside a pressure vessel 
which measures water potential in leaves or matric potential in soil. In 
many cases the pressure potential is hard to distinguish from the matric 
potential. For example, in soil a positive hydrostatic pressure is called a 
pressure potential and a negative pressure a matric potential. In the xylem 
of plants the pressures are generally negative, but the potential is referred 
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FIGURE 4.1. Soil moisture characteristics for three soil textures. 

to as a pressure potential. Confusion arises because the components of the 
water potential differ in different systems, and because the components 
are defined primarily by method of measurement rather than on some rig- 
orous thermodynamic basis. For our definitions, we attempt to distinguish 
between pressure and matric potential in terms of the nature of the forces 
acting on the water. Matric potential is defined as the reduction in water 
potential from short-range forces near interfaces (capillary forces or van 
der Waals forces). It is always negative. Pressure potential is considered a 
more macroscopic effect acting throughout a larger region of the system. 

The pressure potential is computed from: 

where P is the pressure (Pa) and p, is the density of water. The pressure 
potential can be either positive or negative, but usually is just positive. 

The osmotic component arises fromthe dilution effect when solutes are 
dissolved in water. It does not really act as a potential or driving force for 
water movement unless the solutes are constrained by a semipermeable 
membrane. This occurs mainly in plant and animal cells and at air-water 
interfaces. When the solute is constrained by a perfect membrane, the 
osmotic potential can be computed from: 
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where C is the concentration of solute (molkg), $is the osmotic coef- 
ficient, v is the number of ions per molecule (e.g., 2 for NaC1,3 for 
CaC12, and 1 for sucrose), R is the gas constant (8.3143 Jmol-'KT'), and 
T is the kelvin temperature. The osmotic coefficient has a value of one 
for an ideal solute, and is generally within ten percent of that value for 
solutions encountered in organisms and their environment. More accu- 
rate values are available in Robinson and Stokes (1965). 

Two examples from nature illustrate the balance of potentials and the 
way they sum. In plant cells, concentrations of solutes are quite high. 
The cell membrane is permeable to water but not to the solutes, so water 
tends to move into the cell. The cell wall prevents volume expansion, 
so the pressure inside the cell increases. When the sum of the pressure 
and osmotic potential is equal to the water potential in the xylem, water 
ceases to move into the cell. If the cell walls of plants were not rigid and 
able to withstand high pressures, water would continue to move into the 
cell, diluting its contents until life processes would cease. 

The other example has to do with blood in the circulatory system of 
animals. Solutes are free to diffuse through the walls of the capillary 
system, but proteins are too large and are kept in the blood stream. The 
negative matric potential of the blood proteins just balances the positive 
blood pressure potential. The blood matric potential (referred to as colloid 
osmotic pressure in the medical literature), provides just enough "suction" 
to keep the blood in the circulation system. 

Example 4.1. If the reference for gravitational potential is the water table 
at 2 m depth, what is the gravitational potential at the soil surface? 

Solution. Using Eq. (4.3), = 2 m x 9.8 m s - ~  = 19.6 m2 s-'. From 
the example in Ch. 1, we know that this is equivalent to 19.6 Jkg. 

Example 4.2. If the osmotic potential of plant sap is equivalent to 0.3 
molal KC1, and the total water potential of the tissue is -700 Jkg, what 
is the turgor pressure? 

Solution. Using Eq. (4.6) to get the osmotic potential, with C = 
0.3 mollkg, 4 = 1, and v = 2 gives: 

mol J 
I,+o = -0.3- x 1 x 2 x 8.31 - 

J 
x 293K = -1461 -. 

kg mol K kg 

Now use Eq. (4.2) to obtain the turgor pressure. Assume that all compo- 
nents except the osmotic and pressure components are negligible: +, = 
I,+ - = -700 Jkg - (-1461 Jkg) = 761 Jkg. Using Eq. (4.5), 
P = 761 Jlkg x 1000 kg/m3 = 76 1 Wa. One atmosphere is 101 Wa, so 
the pressure inside the cell is 7.5 atmospheres. Ifthe plant were fully turgid 
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(water potential of the leaf equal to zero), the pressure would be almost 
twice this value. These are typical values for plant leaves and illustrate 
the amazingly high pressures that routinely exist in living systems. 

4.2 Water Potentials in Organisms and their 
Surroundings 

It is useful for future computations to have some feeling for the range of 
water potentials that exist in organisms and their environment. Human 
blood has an osmotic potential around -700 Jkg. Fresh sweat is about 
half this concentration and urine is two to three times as concentrated as 
blood. Osmotic potentials of blood and other body fluids of most mam- 
mals are similar to these. The osmotic potentials of cell sap in plant leaves 
ranges from -500 to -7000 Jkg. Typical values for mesophytic species 
are in the range - 1000 to -2000 Jlkg. The water potential of leaves ap- 
proaches that of the soil at night when transpiration rates are very low. If 
the soil is wet, the maximum leaf water potential is near zero. In the day, 
with high transpiration rates, the turgor pressure is close to zero, and the 
leaf water potential is about equal to the osmotic potential. The variation 
in leaf water potential, for a plant growing in wet soil, may therefore vary 
from - 100 to -2000 Jkg  over a diurnal cycle. 

When soils are saturated, their water potential is near zero, but gravity 
quickly drains them to potentials between -10 and -30 Jlkg. The water 
content corresponding to this water potential is called field capacity. It 
is an approximate, but useful upper limit for available water in soil. As 
plants extract water from the soil, the water potential decreases until all 
remaining water is so tightly held that root water potentials cannot drop 
low enough to withdraw additional water. The water content below which 
minimal water extraction by plant roots occurs is called the permanent 
wilting point, and it corresponds roughly to the water content when soil 
has a water potential of - 1500 Jkg. Again, this point is not exact, but sets 
a useful lower limit for water available to the plant. Soil near the surface 
is further dried by the air, and may reach potentials of -3 x lo5 Jkg, but 
this drying only affects the top few decimeters of soil. The remainder of 
the soil profile is not likely to dry below about -2000 Jkg. 

At the lower limit of water potential for living systems, some fungi are 
able to live at water potentials in the range -50 to -70 kJ/kg, and there 
are reports of both plants and insects taking up water from environments 
which are this dry (though their internal water potentials are probably 
much higher). These, however, are very unusual situations. 

With these water potentials in mind, we now consider the effect of 
water potential on the vapor pressure at the liquid-vapor interface. 

4.3 Relation of Liquid- to Gas-Phase Water 

For every computation of evaporation rate the vapor concentration at the 
evaporating surface needs to be known. This surface is the interface be- 
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tween the liquid water phase and the gas phase. In Ch. 3 we said that the 
concentration of vapor at this interface is the saturation vapor concentra- 
tion at surface temperature if the surface is free water. If the surface is not 
a free water surface, then we expect the surface to have a humidity less 
than 1.0 and a vapor concentration less than the saturation concentration. 
From Eq. (3.1 l), we can write: 

where hrs is the humidity at the liquid-gas interface. We expect this hu- 
midity to be related to the water potential of the liquid phase, but need to 
find the relationship. 

The relationship between water potential and humidity can be derived 
by considering the work required to create a volume d  V of water vapor. 
The first law of thermodynamics states that the change in internal energy 
( U )  of a system is equal to the difference between the heat input ( Q )  
and the work done. Restricting the work to volume expansion against an 
imposed pressure, then 

If the system is adiabatic (no heat exchange) then d  Q = 0. An expression 
for d V can be obtained by differentiating Eq. (3.4) to get 

Substituting Eq. (4.9) for d  V in Eq. (4.8) gives 

nRT 
dU = - dp .  

P  
The change in energy in going from the reference state where p  = es, 
the saturation vapor pressure, to p  = e, some lower vapor pressure is 
obtained by integrating Eq. (4.10) 

By Eq. (3.1 l), hr = e/es. Also, + = energylmass = U/nMw,  where 
M, is the molecular mass of water (0.018 kglmol). Substituting these 
into Eq. (4.1 1) gives 

Mw+ h, = exp - 
RT ' 

The inverse relationship is more useful. It is 

Example 4.3. Make a table of humidities at liquibair interfaces for 
typical water potentials in organisms and their surroundings. 
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Solution. Assume a temperature of 293 K (20" C), then Eq. (4.13) 
becomes 

kg J 0.018- x @ - mol kg 
h, = exp @ 

J = exp - 
8.31 xK x 293K 135000 

Using this, the following table can be constructed. 

Organism or location 

Blood 
Leaf, night 
Leaf, day; stressed 
Xerophytic leaf 
Xerophytic fungi 
Soil, field capacity 
Soil, permanent wilt 
Soil, air dry 
Saturated NaCl 

Water Potential (Jlkg) 

-700 
-100 
-2000 
-8000 
-58000 

-30 
- 1500 

- 100000 
-38000 

Humidity 

0.995 
0.999 
0.985 
0.942 
0.65 
0.9998 
0.989 
0.48 
0.755 

The table shows that soils wet enough to support plant growth have 
humidities very near 1 .O. The evaporating surfaces of animals and most 
leaves also have humidities near 1.0. Referring back to Eq. (4.7), it can 
generally be assumed that the vapor concentration at an evaporating sur- 
face is equal to the saturation vapor concentration at surface temperature. 
Departures from this occur when there are high concentrations of solute 
in the water, or when the surface has dried below water potentials typical 
of biological activity. 

Example 4.4. In hot, arid environments, sweat evaporates quickly and 
leaves salts on the skin surface. Even though the concentration of salt in 
sweat is lower than that in blood, the concentration can eventually build 
up so that evaporation is finally occurring from a nearly saturated NaCl 
solution. Compare the vapor concentration at the evaporating surface 
just after a shower when the salt concentration is negligible with the 
concentration after a day of heavy work in the heat so that the skin is 
covered with salt. Assume the skin temperature is 36" C. 

Solution. From Table A.3, the saturation vapor pressure at 36" C is 
5.9 kPa. At sea level this is equivalent to a concentration of 59 mmoYmo1. 
Just after a shower, h,, x 1, so the concentration at the evaporating sur- 
face is 59 mmollmol. When the skin is covered with salt, the humidity 
at the evaporating surface is around 0.75 (from the table in Example 4.3) 
so the vapor concentration at the surface is 0.75 x 59 = 44 mmoYmo1. 
If the vapor concentration in the air were 20 mmoYmol, the difference 
would be 39 mmoYmol in the first case and 24 mmoYmol in the second. 
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The presence of the salt would therefore reduce the rate of cooling by 
about 40 percent. 
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Problems 

4.1. What is the gravitational potential at the top of a 30 m tall tree if the 
reference is the soil surface? 

4.2. What is the matric potential ofa loam soil at 0.15 kgkg water content? 

4.3. The brine in the Great Salt Lake is mostly sodium chloride, and 
reaches concentrations around 6 mol/kg in some places. Find the 
osmotic potential of the brine. The osmotic coefficient (4) of 6 molal 
NaCl is 1.27. 

4.4. Find the vapor pressure and vapor mole fraction at the evaporating 
surface of the Great Salt Lake (see 4.3) when its surface temperature 
is 18" C. Its elevation is 1280 m. 

4.5. If the temperature of a leaf is 33" C, estimate the vapor pressure at 
the evaporating surfaces inside the stomata of the leaf. 

4.6. If the total water potential of a leaf is -700 Jikg and the osmotic 
potential is - 1200 Jikg, what is the turgor pressure in the cells? 

4.7. Estimate the humidity inside an animal burrow where plants are 
observed to be growing. 

4.8. In plants sucrose is actively pumped, using metabolic energy, into the 
phloem near the source of carbon fixation by photosynthesis. If the 
concentration of sucrose outside the phloem is 0.5 molikg, the con- 
centration inside the phloem is 1 mol/kg, and the sieve tube elements 
are perfectly semipermeable, how much pressure could be built up 
inside the sieve tube elements (assume = O)? If the sucrose 
is unloaded at some downstream location by the same mechanism, 
so that the sucrose gradient is just reversed from that at the loading 
site, what pressure difference will be maintained between the loading 
and unloading zones in the phloem? This pressure difference is the 
driving force for flow in the phloem. 





As living organisms, we are most acutely aware of three things about 
the wind. We know that it exerts a force on us and other objects against 
which it blows, it is effective in transporting heat from us, and it is highly 
variable in space and time. A fourth property of the wind, less obvious 
to the casual observer, but essential to terrestrial life as we know it, is 
its effective mixing of the atmospheric boundary layer of the earth. This 
can be illustrated by a simple example. On a hot summer day about 10 
kilograms (550 moles) of water can be evaporated into the atmosphere 
from each square meter of vegetated ground surface. This amount of water 
would increase the vapor concentration in a 100 m thick air layer by 100 
g m-3 (136 mmollmol) if there were no transport out of this layer or 
condensation within it. This is much more water than the air could hold 
at normal temperature. The observed increase in vapor concentration in 
the first 100 meters of the atmosphere is typically less than 1 g mP3, so 
we can see how effective the atmosphere is for transporting and mixing. 
A similar calculation (Monteith, 1973) shows that photosynthesis in a 
normally growing crop would use all of the C02 in a 30 m air layer 
above a crop in a day, yet measured C02 concentrations have diurnal 
fluctuations of 15 percent or less. Without the vertical turbulent transport 
of heat, water vapor, COz, oxygen, and other atmospheric constituents, 
the microenvironment we live in would be very inhospitable. 

The influence of the surface on the atmosphere of the earth can extend 
from hundreds of meters at night to several thousand meters during days 
when surface heating is strong. This depth of influence of the surface 
on the atmosphere is called the planetary boundary layer. Through the 
depth of this planetary boundary layer, like all boundary layers that form 
between moving fluids and stationary surfaces, fluxes of momentum, heat, 
andmass decrease with height. The lowest 50 m ofthis planetary boundary 
layer is referred to as the surface layer; this is the region of most interest. 
In this region fluxes of momentum, heat, and mass are virtually constant 
with height and profiles of wind speed, temperature, and concentration 
are logarithmic. 

In order to determine the force of the wind on, or the rate of heat trans- 
fer from living organisms in their microenvironments, it is necessary to 
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know the wind speed in the vicinity of the organism. This requires an 
understanding of the behavior of average wind in the surface boundary 
layer of the earth. The behavior of the wind, in turn, is dictated by rates 
of turbulent transfer in the surface boundary layer. Turbulent transfer the- 
ory allows us to derive equations for wind, temperature, vapor density, 
and COz profiles and fluxes, and are helpful later when we discuss plant 
canopies and their environment. In this chapter we first discuss the behav- 
ior and characteristics of the wind in natural, outdoor environments. In a 
later chapter we present some of the fbdamentals of turbulent transport 
theory and derive the profile equations for wind, temperature, and vapor 
concentration. 

5.1 Characteristics of Atmospheric Turbulence 

As was previously mentioned, one of the obvious characteristics of wind 
is its variability. We are aware of random temporal variations of the wind 
through fluttering of flags and leaves, variations in the force of wind on 
us, and other common experiences. Spatial variations are obvious when 
one looks at a field of "waving grain" or at "cat's paws" on a lake. We 
are also aware that the range of variability is large. We see very small 
scale fluctuations in "heat waves" on hot summer days and feel or hear 
the effects of very large scale fluctuations as wind gusts which blow dust 
or shake the house. All of these characteristics of wind with which we 
are intimately acquainted are characteristics of turbulent flow. Except for 
a thin layer of air close to surfaces, the atmosphere is essentially always 
turbulent, or, in other words, characterized by random fluctuations in wind 
speed and direction caused by a swirling or eddy motion of the air. These 
swirls or eddies are generated in two ways. As wind moves over natural 
surfaces, the friction with the surface generates turbulence. This is called 
mechanical turbulence. Turbulence is also generated when air is heated 
at a surface and moves upward due to buoyancy. This is called thermal 
or convective turbulence. The size of the eddies produced by these two 
processes is different, as is shown in Fig. 5.1. The fluctuations from 
mechanical turbulence tend to be smaller and more rapid than thermal 
fluctuations. A striking demonstration of these types of turbulence can be 
seen by watching the plume from a smokestack on a hot day. The plume 
is called a looping plume because, in addition to the small scale mechan- 
ical turbulence that tears the plume apart and spreads it with distance, the 
thermal updrafts and downdrafts cause the entire plume to be transported 
upward or downward. 

Large eddies, which are produced either mechanically or thermally, are 
unstable and decay into smaller and smaller eddies until they are so small 
that viscous damping by molecular interactions within the eddies finally 
turns their energy into heat. The size of the smallest eddies produced 
by mechanical and convective motion (rather than breakdown of larger 
eddies) is called the outer scale of turbulence. The eddy size at which 
significant molecular interaction (viscous dissipation) begins is called 
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FIGURE 5-1. Typical traces of a fast response wind sensor in conditions of pure 
mechanical turbulence and thermal plus mechanical turbulence. 
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the inner scale of turbulence. The outer scale is generally taken to be a 
few meters and the inner scale a few millimeters. 

This process of larger eddies breaking down into ever smaller ones is 
expressed in a rhyme by L.F. Richardson, a scientist who is responsible 
for much of the theory of atmospheric turbulence (Gifford, 1968): 

Great whirls have little whirls 

That feed on their velocity; 

And little whirls have lesser whirls, 

And so on to viscosity. 

Gifford remarks that this parody of de Morgan's verse on fleas "may be 
the only statement of a fundamental physical principle in doggerel." 

5.2 Wind as a Vector 

There is a fundamental difference between wind and the other envi- 
ronmental variables (temperature, vapor, and other gas concentrations) 
discussed in earlier chapters. Wind is a vector quantity involving both 
magnitude and direction, while the other environmental variables are 
scalars, where only magnitude is specified. The wind velocity vector 
is commonly divided into components along the axes of a rectangular 
coordinate system. For convenience, the coordinate system is oriented 
so that the x axis points in the direction of the mean wind. The velocity 
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FIGURE 5-2. Fluctuations in horizontal and vertical wind recorded with fast 
response sensors (after Tatarski, 1961). 

components are given the symbols u, v, and w, where u is the velocity 
component in the x direction, v in the y direction, and w in the z (verti- 
cal) direction. Each velocity component has a mean value (averaged over 
a period ranging from 15 minutes to an hour) and a component which 
fluctuates about the mean. Since the coordinate system is oriented in the 
direction of the mean wind, the mean v and w components are zero. Figure 
5.2 shows the u and w components of the wind vector for a period of a 
few seconds. These can be compared with the temperature fluctuations 
in Fig. 2.4. Wind fluctuation (turbulence) is the underlying cause of all 
of these fluctuations, and similar patterns are found in measurements of 
all atmospheric scalars (water vapor, COz, etc.) 

5.3 Modeling the Variation in Wind Speed 

We return to turbulent transport under the topic of transport processes. 
We now focus on modeling just the variation in the mean wind speed. Our 
goal is the ability to model the wind speed around animals and leaves. 
These models are used later to compute the boundary layer conductances 
of these objects. We are therefore not so concerned with the fluctuations 
or vector components of the wind and are most interested in the wind 
speed. A rigorous analysis would distinguish between the wind speed 
and the magnitude of the mean wind velocity vector, but in practice the 
two are often used interchangeably. We therefore use the symbol u to 
represent both the magnitude of the velocity vector and the wind speed. 
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If average wind speed were measured at several heights above a soil 
surface, the profile would look like the lower (h = 1 cm) profile plotted 
in Fig. 5.3. The wind speed is zero at the soil surface, increases rapidly 
with height near the surface, and is fairly constant with height far from 
the surface. Over a crop (Fig. 5.3; h = 50 cm) the shape of the profile is 
similar, but is shifted upward. For the same height far from the surface, 
wind speeds over the crop are lower, and the wind profile appears to 
extrapolate to zero somewhere above the soil surface (though the actual 
wind speed in the crop is not zero, as is shown later). 

The shape of these profiles is similar to the shape of the temperature 
profiles presented in Ch. 2. The reason for the shape is the same as for the 
temperature profiles. Turbulent transport near the ground is inefficient, 
with only small eddies forming to transport the heat or momentum. Farther 
from the surface the eddies are larger and the transport more efficient, so 
the gradients of temperature or wind speed are smaller. 

As with temperature, we could log-transform the height axis ofFig 5.3 
to obtain approximately linear relationships with wind speed. The offset 

Wind Speed  (m/s) 

FIGURE 5-3. Profiles of wind speed above a 50 cm tall crop and a soil surface 
(h = 1 cm). 
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FIGURE 5.4. Wind profiles from Fig. 5.3 plotted on a logarithmic scale. 

of the crop surface has an effect, however. An equation which accounts 
for this offset is 

where u* is called the friction velocity, d is the zero plane displacement, 
and zm is the momentum roughness parameter. Equation (5.1) is only valid 
for z 2 z, + d. The constant 0.4 is called the vonKannan constant. Figure 
5.4 showsthe windprofiles fromFig. 5.3 plotted withln[(z -d)/z,] as the 
vertical axis. Both profiles plot as straight lines which extrapolate to zero 
wind at = d + zm (when = d + zm, ln[(z - d)/zm] = ~(z,/z,) = 
ln(1) = 0). This log-profile expression (eq. 5.1) is appropriate for the 
lowest 50 to 100 m of the atmosphere, which is called the atmospheric 
surface layer. Above this height is the planetary boundary layer, which 
extends to a height of 1 to 3 km during daytime. The friction velocity, u* 
is constant in this surface layer. 

5.4 Finding the Zero Plane Displacement and 
the Roughness Length 

The height d' = d + z,, where the wind profile extrapolates to zero, 
is an actual measurable height within the canopy. Its meaning can be 
understood as follows. For smooth surfaces, the drag of the surface on 
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the wind occurs at the surface, and d' = 0. For a crop, the drag occurs 
throughout the crop, but a single surface placed at some height below the 
top of the crop can be imagined which would have an effect equivalent to 
the wind. If z in Eq. (5.1) is measured from that point, then there would be 
no need for a zero plane displacement in the equation. Normally, however, 
we want to measure z from the soil surface. When doing this, d' needs to be 
subtracted to place the effective location of drag near the top of the crop. 

An intuitive feeling for the meaning of z, and u* is harder to obtain. 
The units of u* are velocity or speed. Its value is directly proportional to 
the wind speed at height z, as can be seen from Eq. (5. l), but also depends 
on the friction of the wind with the surface. Thus the name "friction 
velocity." While z, has units of length, one should not try to interpret it 
as a measurable physical length. It is a measure of the form drag and skin 
friction in the layer of air that interacts with the surface. It is most reliably 
determined empirically by measuring wind speed at several heights above 
a surface and plotting ln(z - d) versus u (z) . A straight line should result 
which can be extrapolated to u = 0. If we set u(z) = 0 in Eq. (5.1), 
it can be seen that ln(z - d) = In(z,). The intercept, where u = 0, 
is ln(z,). The value of z ,  is the exponential of this intercept. Table 5.1 
gives several values of z, determined in this way. It should be pointed out 
that these are values from particular experiments and are not necessarily 
representative of all surfaces like the one described. The wind can make 
the surface rougher or smoother and the direction of the wind with respect 
to rows or other regular features of the surface can have a big effect on the 
roughness length. The wind obviously has a big effect on the roughness 
of water surfaces, but the effect on plant canopies can also be substantial. 
Maki (1 975) did an extensive set of z, and d measurements on a full-cover 
Teosinte canopy while its height (h)  changed from 0.68 m to 1.45 m (LA1 
increased from 2 to 6) and observed a strong linear relationship between 
zm and u* as well as d and u* over a range of u* from 0.05 to 0.5 m/s; 
furthermore, z, was related to d. Fitting data from the five measurement 

TABLE 5.1. Empirically determined values of roughness length for 
various surfaces (from Hansen, 1993). 

Q p e  of Surface z, (cm) Type of Surface Zm (cm) 

Ice 
Dry lake bed 
Calm open sea 
Desert, smooth 
Grass, closely mowed 
Farmland, snow covered 
Bare soil, tilled 
Thick grass, 50 cm high 
Forest, level topography 

Coniferous forest 
Alfalfa 
Potatoes, 60 cm high 

Cotton, 1.3 m tall 
Citrus orchard 
Villages, towns 
Residential, low density 
Urban bldgs, business dist. 
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dates results in z m / h  = 0.16u* and 1 - d l h  = 0.4u* (u* is in units 
of mls here); this means that 1 - d l h  = 2.5zm/h. The dependence of 
zm and d on wind speed is rarely taken into account because it adds a 
complication that is not well understood. 

For uniform vegetated surfaces, such as agricultural crops, the zero 
plane displacement and roughness length can be approximated by know- 
ing just the height of the canopy. These relationships were worked out 
empirically several decades ago, but were improved upon by Shaw and 
Pereira (1982) using a simulation model of canopy-atmosphere interac- 
tion. By using the model they were able to investigate effects of plant 
density and foliage distribution with height in the canopy. Figure 5.5 
shows the ratios d l h  and z,/h for a canopy with foliage distribution 
similar to a corn canopy. In the figure, h is the height of the canopy and 
plant area index (PAI) is the area of leaves and stems per unit ground area 
(related to plant density). 

Figure 5.5 shows a generally increasing zero plane displacement with 
plant density and an increasing and then decreasing roughness length. 
This behavior is about what we would expect. At low density momentum 
exchange occurs throughout the canopy, but with increasing density the 
wind is less able to penetrate and the exchange is forced higher and higher 
in the canopy. At very low plant density, increasing the density increases 
the roughness of the surface, but after PA1 of about 0.6 the increasing 
density tends to smooth the surface. At PA1 = 0, d and z ,  should equal 

zero plane 
displacement 

roughness 
/ - length 

FIGURE 5.5. Change in d l  h and z, /  h with plant area index for uniform plant 
canopies. 
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the values for the underlying surface. Figure 5.5 does not show this. 
However, the simulation was not intended to show the effects of very low 
plant density and the extrapolation to PA1 = 0 is therefore not reliable. 

If we take PA1 = 3 as representative of a range of agricultural crops 
then Fig. 5.5 gives 

and 

Using the simple relation between z, and d from Maki (1975), if z, = 
O.lh then d = 0.75h; this is in reasonable agreement with Fig. 5.5 at 
high PAI, where the relation of Maki (1975) would be expected to hold. 
When only canopy height is known, Eqs. (5.2) and (5.3) can be used to 
estimate d and z,. If an estimate of the plant area density is available, 
then Fig. 5.5 can be used. If wind profile data are available, it is best to 
find z ,  from the wind profile data. 

Example 5.1. Four anemometers are to be placed at different heights 
above a plant canopy to measure wind speeds for a wind profile. At what 
heights should the anemometers be placed to give the most information 
about the wind profile? Assume the canopy is 40 cm tall. 

Solution. Since wind speed varies with the logarithm of height above 
the zero plane, the most information is obtained (largest differences be- 
tween readings) if the anemometers are logarithmically spaced. If the 
top anemometer is placed 2 m above d + z,, then the others could be 
at 1, 0.5, and 0.25 m above d + z,. The zero plane displacement is at 
0.65 x 0.4 = 0.26m, so the heights above the ground would be 0.51, 
0.76, 1.26, and 2.26 m. 

Example 5.2. The average wind speed measured 3 m above a golf course 
was found to be 2.7 mls. What is the wind speed at the surface of the turf? 
Assume the grass is 3 cm tall. 

Solution. From Eqs. (5.2) and (5.3), d = 0.02 m and z, = 0.003 m. 
Using these, with z = 3 m gives 

Solving for u* gives u* = 0.16 mls. The friction velocity is constant 
for all heights, so this value can now be used to determine the average 
wind speed at any height. The wind speed at h (the top of the canopy) is 
therefore given by 
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Using the value of u* just calculated, u(0.03) = 3.13 x 0.16 m!s = 
0.5 d s .  

5.5 Wind Within Crop Canopies 

The equations given so far deal only with wind above the plant canopy. 
These equations are useful for determining the wind in the microenviron- 
ment of many living organisms, but cannot be used for leaves within a 
canopy or for animals or insects that live within a crop or forest canopy. 
Equation (5.1) predicts that wind speed is zero at z = d + z,. It gives 
no information about wind speeds below this level, but presumably they 
would remain at zero to the bottom of the canopy. From experience, 
however, we know that the wind does blow inside canopies, so Eq. (5.1) 
is apparently wrong. In fact, Eq. (5.1) is only useful above the canopy. 
Within the canopy a different model must be used. 

In order to model the wind in canopies, the canopy is divided into 
at least two layers. In most of the canopy the wind speed decreases 
exponentially with depth. Figure 5.6 shows the lower part of the wind 
profile fiom Fig. 5.3 for the 50 cm tall canopy along with the wind profile 
throughout most of the canopy. The equation for the top 90 percent of the 
canopy is: 

where a is an attenuation coefficient for the crop. The wind speed at the 

0 1 2 3 4 
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FIGURE 5.6. Wind speed within and just above a crop. 
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top of the canopy u(h) is equal to u(h) computed from Eq. (5.1), thus 
matching the two profiles at the top of the canopy. The value for a in Fig. 
5.6 is 2.5. Table 5.2 gives values of a for a number of different canopies. 

Goudriaan (1977) suggests a simple equation for calculating the 
attenuation coefficient as a function of crop structure; namely, 

where L, is the leaf area index, h is the canopy height, and 1, is a mean 
distance between leaves in the canopy given by 

for grass leaves and 

for leaves that are shaped more like squares; w is the leaf width. Table 
5.3 contains some values of a calculated from Eq. (5.5) and compared 
to measurements. Clearly, Eq. (5.5) does not work well if the vegetation 
cover is too low such as in the first corn entry. 

In the bottom 10 percent of the canopy, a new logarithmic profile is 
developed with a zero plane displacement of zero and a roughness length 
characteristic of the underlying soil surface. Equation (5.1) can therefore 
be used for this part of the canopy. The wind speed at the top of this layer 
is equal to the wind speed at the bottom of the exponential layer, so from 
one wind speed above the canopy all of the wind speeds can be estimated 
to the bottom of the canopy. 

In tall tree canopies with dense foliage at the top and a relatively open 
stem space, the wind in the canopy can be quite unrelated to the wind 
above the canopy, in both speed and direction. An example of the behav- 
ior of the wind in this intermediate layer can be observed by watching 
the drift of smoke from a campfire in a forest. This wind results from 
horizontal pressure differences within the canopy, and is attenuated by 
drag of the elements within the stem space and by the ground surface. In 

TABLE 5.2. Attenuation coefficients for different 
crops (from Cionco, 1972) 

Canopy a Canopy a 

Immature corn 2.8 Sunflower 1.3 
Oats 2.8 Xmas trees 1.1 
Wheat 2.5 Larch trees 1 .O 
Corn 2.0 Citrus orchard 0.4 
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TABLE 5.3. Canopy wind profile attenuation coefficient 
calculated for several canopies and compared to measurements 
in corn. Corn* is from Inoue and Uchijima (1979) and corn+ is 
from Sauer (1993). The values of w are estimated. 

Crop h (m)  LA1 w (m) a (eq. 5.5) a(meas) 

Corn* 0.5 0.55 0.05 0.48 1.6 
1.4 2.5 0.08 1.7 2.0 
2.25 4.3 0.10 2.7 2.6 
2.77 4.2 0.12 2.7 3.0 

Corn+ 1.9 3.1 0.1 2.1 1.8 
2.6 3.1 0.1 2.2 1.9 

Wheat 1 .O 3.0 0.02 2.6 - 
Soybean 1.0 3.0 0.05 2.3 - 

1 .O 6.0 0.05 3.6 - 

such canopies, Eq. (5.4) should only be applied to the top layers (30 to 
40 percent) of the canopy. 

Example 5.3. What is the wind speed at a height of 1 m in a 2 m high 
corn crop if the wind speed 1 m above the top of the crop is 4.6 d s ?  

Solution. From the information given, z = 3 m, d = 1.4 m, z ,  = 
0.2 m, and u(3) = 4.6 d s .  Using Eq. (5.1), gives u* = 0.88 d s .  Us- 
ing the result of Examples 2, u(h) = 2.75u* = 2.43 d s .  Now, using 
Eq. (5.4) with a = 2 (for corn) gives: 

u(1) = 2.43 exp [2 ( f - l)] = 0 . 9 d s .  
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Problems 

5.1. If the wind measured at 2 m (height measured from the soil surface) 
over a wheat field is 5 mls, what is the wind speed at the top of the 
canopy? Assume the wheat is 60 cm in height. 

5.2. Using the following data find u* and z,. Assume d = 0.08 m. Use 
a graphical or prve-fitting method; not Eqs. (5.2) and (5.3). 

-- - 

Height (m) Wind speed (mls) 

5.3. What is the wind speed 10 cm above the ground in problem 5.1 ? 
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Life depends on heat and mass transfer between organisms and their 
surroundings. Such processes as carbon dioxide exchange between leaves 
and the atmosphere, oxygen uptake by micro-organisms, oxygen and 
carbon dioxide exchange in the lungs of animals, or convective heat loss 
from the surfaces of animal coats are fundamental to the existence of 
life. A thorough understanding of these exchange processes is there- 
fore a necessary part of the study of biophysical ecology. 

Now that we have the ability to describe the state of the organism 
environment (temperature, gas concentrations, wind, etc.) and the tem- 
perature or concentration at the organism surface, we are ready to show 
how to compute fluxes of heat and mass between organisms and their 
surroundings. In this section we briefly review the transport laws, and 
then show how to integrate the laws of heat and mass transfer to obtain 
forms of them that are easily used in environmental biophysics. We then 
show how to apply these laws to compute fluxes. In Ch. 7 we use princi- 
ples from engineering and micrometeorology to compute conductances 
for organisms and their surroundings, and then, in Chs. 8 and 9 we briefly 
present the theory for heat and water flow in soil. 

The rate of transport of mass or energy is usually expressed as the 
product of a proportionality factor and a driving force. The most familiar 
transport laws are the following: 

Newton's law of viscosity for momentum transport: 

Fick's law for diffusive transport of material: 

Fourier 's law for heat transport: 
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Darcy 's law for fluid (water) flow in a porous medium (soil): 

In Eqs. (6.1) through (6.4) t is the shear stress ( ~ l m ~ )  between layers of 
a moving fluid with dynamic viscosity ,u and velocity gradient duldz; Fi 
is the flux density (kg m-2s-') of a diffusing substance with molecular 
diffusivity D j  (m2/s) and concentration or density (kg/m3) gradient of 
dpj/dz; H is the heat flux density (w/m2) in a substance with thermal 
conductivity k ( ~ m - '  K-') and temperature gradient d Tldz (Clm); and 
J,  is the water flux density (kg m-2 s-') in soil with hydraulic conduc- 
tivity K(@) (kg s m-3) and water potential gradient d@/dz (J kg-' m-' 
or m/s2). We use Eq. (6.2) mainly for describing diffusion of gases in air. 
The subscript j represents the different substances that diffuse through 
air. Here we are concerned mainly with water vapor, C02, and oxygen for 
which we use the subscripts v, c and o. The negative signs in Eqs. (6.2) 
through (6.4) indicate that the flux is in the positive direction when the 
gradient is negative. 

The strong dependence of hydraulic conductivity on water potential in 
unsaturated soil is indicated by K (@) in Eq. (6.4). The other coefficients 
are almost constant. Equations (6.1) through (6.3) therefore express a 
nearly linear relationship between a flux density and a driving force (a 
"concentration" gradient). 

6.1 Molar Fluxes 

In order for us to use the mass transport equation, it needs to be converted 
to the form for molar fluxes. Substituting Eq. (3.2) into 6.2 gives 

where Fj is in mol m-2 s-'. This is the form we use throughout this 
book. Note, however, that mole fluxes are easily converted to mass fluxes 
through multiplication by the molecular mass of the diffusing gas. 

There are several advantages to expressing the heat equation in the 
same form as Eq. (6.5). The mathematical manipulations are then the 
same for both transport processes, and the units (m2/s) are the same for 
both diffusivities. The diffusivities are roughly the same size and they 
have similar temperature and pressure dependence (which can be derived 
from kinetic theory). For many conditions of interest in environmental 
biophysics, the diffusivities are constant multiples of each other so if one 
is known, the other is easily found. Equation (6.3) can be converted to a 
form similar to Eq. (6.5) by multiplying and dividing by c,, where c, is 
the molar specific heat of air (29.3 J mol-' C-I). The quantity klc, is 
the thermal diffusivity DH, SO Eq. (6.3) becomes 
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6.2 Integration of the Transport Equations 

In addition to the transport laws previously mentioned, a fifth law is in 
common use that describes the flow of current in an electrical circuit. 
This is Ohm's law, which states that the current flowing in a conductor 
is directly proportional to the applied voltage and inversely proportional 
to the electrical resistance of the conductor. This law is different from 
the other laws in that it applies to a macroscopic system. The applied 
voltage is measured across an entire conductor, not over an infinitesimal 
increment as is indicated by the differentials in Eqs. (6.1) through (6.6). 
The resistance or conductance of the conductor is a function of size and 
shape as well as basic material properties. 

In environmental biophysics, our problems are similar to the circuit 
problem. It is usually possible to specify concentrations at the organism 
surface and in the surroundings some distance from the organism, but it is 
usually impossible to measure gradients on a microscopic scale, as would 
be needed for the transport equations that we have presented so far. We 
therefore write the transport equations, by analogy with Ohm's law, in 
an integrated or macroscopic form similar to Eq. (1.1). The concentra- 
tions are specified at the organism surface and in the surroundings, and 
the transport resistance or conductance is defined as the concentration 
difference divided by the flux density. The mass and heat flux equations 
are the ones we most often use in this form. Expressing Eqs. (6.5) and 
(6.6) in this form gives: 

and 

where g is the conductance (mol m-2 s-') and r is resistance (m2 slmol). 
For the simple case of pure, linear diffusion, g is just $ D j / A z .  The re- 
sistance is always just the reciprocal of the conductance. The integrated 
forms Eqs. (6.7) and (6.8) are useful for many cases besides the sim- 
ple one. Chapter 7 deals in more detail with integration of the transport 
equations to determine resistance values from basic fluid properties and 
system geometry. 

6.3 Resistances and Conductances 

As we have shown, it is convenient to express exchange of heat and mass 
between organisms and their environment in terms of a concentration 
difference multiplied by a conductance or divided by a resistance. The use 
of resistance for calculating heat and mass exchange is convenient because 
a series of several resistances are often found between the surface of the 
organism and the environment, and therefore the familiar series resistor 
formulas from electronics can be used to calculate the total resistance. 
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Conductances, however, are better for suggesting significance since the 
flux is directly proportional to the conductance. Conductances, rather 
than resistances, should be used for statistical operations, since errors 
in conductance, rather than the resistance are normally distributed. A 
mean conductance is therefore a reliable indicator of expected behavior 
of a population of exchange surfaces, while a mean resistance may be 
meaningless. This is easy to see if you consider two surfaces; one has 
infinite resistance, or zero conductance and the other has a resistance of 5 
m2 slmol, or a conductance of 200 mmol m-2 s-' . The average resistance 
of the two is infinite, suggesting that the average water loss is zero; but 
the average conductance is 100 mmol s-', suggesting the correct 
average water loss. 

We use units of m2 slmol for resistance, and mol m-2 s-' for con- 
ductance. Units for resistance in the previous edition of this book and in 
much of the environmental biophysics literature are slm. To convert from 
slrn to m2 slmol, divide the slm resistance by the molar volume of air, 
4 1.4 mol m-3 (at sea level and 20" C). 

6.4 Resistors and Conductors in Series 

Consider the flow of heat from the core of an animal to the surrounding 
air. The resistances to heat flow are shown in Fig. 6.1. Here Ta is air 
temperature, T, is the temperature at the surface of the coat, To is the skin 
surface temperature, and Tb is the body core temperature. The resistances 
shown are those for the boundary layer of air, for the coat, and for the 
tissue. Following the rules for determining the total equivalent resistance 
of resistors in series, the resistance for heat transfer from the body core ' 
to the air is 

The total conductance is the reciprocal of the total resistance, and is 
therefore the reciprocal of the sum of the reciprocals of the component 
conductances: 

The heat flux density through all resistors is the same, so the ratio of the 
temperature drop across any resistor to the total temperature difference 
between the body and air is equal to the ratio of that resistance to the total 

FIGURE 6.1. Resistors in series: resistances and temperatures from the core of an 
animal to the surrounding air. 
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FIGURE 6.2. Conductors in parallel: vapor diffusion through the surface of a leaf. 

resistance. If the total resistance were 10 m2 slmol, the coat resistance 
were 6 m2 slmol, Tb = 37" C and T, = 0" C, the temperature change 
from the skin surface to the outer edge of the coat would be (6110) x 
(37 - 0) = 22.2" C. 

6.5 Resistors in Parallel 

Now consider the loss of water from a leaf surface. Water can be lost both 
through the stomata and directly through the cuticle of the leaf. These 
represent parallel pathways for vapor loss, as shown in Fig. 6.2. Here C,, 
and C,, represent water vapor concentration just inside and outside the 
leaf epidermis. The conductances are for cuticle and stomata. From the 
rules for parallel resistors in electronics, it is known that the combined 
resistance of resistors in a parallel circuit is the reciprocal of the sum of 
the reciprocals of the component resistors. The conductances simply add. 
The total conductance for the leaf is therefore 

The total, or equivalent resistance is: 

The vapor concentration difference across the two resistances is the same, 
and the vapor flux through each is proportional to the conductance of each 
resistor. 

6.6 Calculation of Fluxes 

In order to use Eq. (6.7) to calculate the rate of vapor exchange or latent 
heat exchange between plant canopies and the atmosphere, or between 
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living organisms and their environment, the following needs to be known: 
the vapor concentration at the evaporating surface, the vapor concentra- 
tion of the air, and the total resistance to vapor transfer between the 
evaporating surface and the air. We showed earlier how to calculate vapor 
concentration in the air from humidity and air temperature, or from dew 
point or wet bulb temperature measurements. The vapor concentration 
at the evaporating surface is calculated by knowing the temperature of 
the surface and the water potential of the liquid phase from which water 
is evaporating. As shown in Ch. 4, the humidity is often very near 1.0 
at the evaporating surface, so the vapor concentration at the evaporat- 
ing surface, in these cases, is just the saturation concentration at surface 
temperature. 

The conductances to water loss are generally series combinations of 
boundary layer and surface conductances. We consider boundary layer 
conductance in detail in Ch. 7. To give some indication of the sizes of 
conductances in nature, a 1 cm thickness of still air has a conductance 
around 100 mmol m-2 s-'. The boundary layer conductances of leaves 
and of crops typically range from 500 to 1000 mmol m-2 s-' . 

Equation (6.8) is used similarly. The temperature of the environment 
and organism needs to be known as well as values for all resistances or 
conductances between the organism and the environment.The total resis- 
tance may be a series combination of several component resistances, as it 
is with vapor resistances. The magnitudes of these resistances, at least in 
the boundary layer and in a layer of still air, are similar to those for vapor. 
We now go through several example calculations to show how Eqs. (6.7) 
and (6.8) are used. 

Example 6.1. Find the rate of water loss from a crop. Assume the canopy 
temperature is 30" C, the air vapor pressure is 1.0 kPa, canopy conduc- 
tance is 1 mol m-2 s-', and boundary layer conductance is 0.5 mol m-2 
s-' . 

Solution. The humidity at the evaporating surfaces inside the leaves 
is essentially 1, (Eq. (4.13), with @ = -1000 Jkg), so Cv, = 
h,,es(Ts)/pa = 1 x 4.24kPa/lOlkPa = 0.042 mol/mol. The vapor 
concentration in the air is Cva = 1 .Ok Pa/101kPa = 0.0099. The total 
conductance for vapor exchange is the series combination of canopy and 
boundary layer conductance: 

1 
gv = 1 I = 0.33 mol m-2 s-' 

1 mol m-2 s-I + 0.5 mol m-2 s-1 

The evaporative loss is therefore 

E = 0.33 mol m-2 s-'(0.042 - 0.009) 

= 0.0107mol m-2 s-' = 10.7m mol m-2 s-' . 
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The mass flux density is 

rnol 0.018kg 
0.0107- x - kg = 1.92 x - . 

m2s mol m2s 

To get some feeling for the magnitude of this number, if evaporation 
continued at this rate for an hour, 3600 s x 0.000192 kg m-2 s-' = 
0.7 kg/m2 would be evaporated. One kg/m2 is 1 mm depth of water over 
one square meter. Therefore, 0.7 mm of water would have evaporated in 
an hour. The heat required to evaporate this amount of water is 

- . . . .- rnol . . . . . J . W 
k E  = 0.0107 - X 44000 - = 471 - 

m2s mol m2 

(recall from Ch. 1 that a joule per second is equal to a watt). 

Evaporation from a wet soil surface is similar to evaporation from 
a crop. When the soil surface is wet, water potential is near zero, and 
the vapor pressure at the surface is near saturation. As the soil dries, the 
resistances change drastically. The wet front, or point in the soil where 
h, = 1 retreats into the soil, and the total resistance (the sum of the 
diffusion resistance through the soil and through the boundary layer of 
air above the soil) increases. A 1 cm thick layer of dry soil has a diffusive 
conductance for vapor of about 0.03 rnol mP2 s-'. 

Example 6.2. What is the rate of evaporation from a moist soil which 
is covered with a 5 cm thick dry soil layer? Assume the same surface 
temperature and air vapor pressure conditions as in the previous example. 

Solution. The soil conductance is 0.03 rnol m-2 s-'15 = 0.006 rnol m-2 
s-'. Assume the temperature of the wet soil below the dry layer is 30" C, 
similar to the surface in the previous example. The vapor flux calculation 
is like the previous example, but with soil conductance in series with 
boundary layer conductance. The overall vapor conductance is 0.0059 
rnol m-2 s-', and the evaporation rate is 

E = 0.0059 rnol m-'s-' (0.042 - 0.0099) = 0.2 mmol m-'s-'. 

The water loss from the crop (or a wet soil) is therefore 50 times as 
great as that for the dry soil surface. This gives some indication of the 
effectiveness of a dry soil layer in slowing evaporation. 

Example 6.3. Find the vapor conductance (skin plus boundary layer) of 
a potato if, when left for 12 hours on a laboratory bench, it lost 3 g of 
water. The tuber and laboratory are at 22" C, and the laboratory humidity 
is 0.53. The surface area of the potato is 310 cm2. 
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Solution. Rearranging Eq. (6.7) to find conductance gives 

E 
gv = 

CVS - Cva . 
The evaporation rate is 

From Table A.3, the saturation vapor pressure at 22" C is 2.64 kPa. From 
Ch. 3, the mole fraction difference is 

es(Ta)(l - h,) - 2.64k Pa(1 - 0.53) mol 
cvs - Cva = - = 0.012 - . 

Pa lOlk Pa mol 
The conductance is 

0.00124 $ mrnol 
gv = = 10.3 - . 

0.012 2 m2s 

Example 6.4. Warm moist winds can quickly melt substantial depths of 
snow. Heat transfer to the snow is latent as well as sensible. Compare the 
latent and sensible heat fluxes to a snow drift from saturated air at 5" C, 
if the boundary layer conductance is 1 rnol m-2 s-' . 

Solution. From Table A.3, the saturation vapor pressure at 5" C is 0.87 
Wa, and at 0" C (the surface temperature of the melting snow) it is 0.61 
H a .  The sensible heat flux density is 

J mol 
H = 29.3 - 

W 
x 1-(0°C - 5°C) = -147- 

mol C m2s m2 

The latent heat flux density is the latent heat of vaporization multiplied 
by Eq. (6.7): 

J 0.61k Pa - 0.87k Pa W 
h E  = 44000- x l- 

m o l (  lOtkPa 
) = -1142. 

rnol m2s 

The negative signs indicate that the flux is toward the surface. The total 
heat flux to the surface is 261 w/m2. The interesting thing about this 
computation is that the latent heat flux is almost half of the total. 

Example 6.5. A person has a sleeping bag which has a thermal conduc- 
tance of 0.05 rnol m-2 s-'. The tissue conductance of the person, while 

FIGURE FOR EXAMPLE 6.5. 
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sleeping, is around 0.5 rnol m-2 s-' . Heat exchange with the surroundings 
is by radiation and convection in parallel. The convective conductance is 
0.25 mol m-2 s-I and the radiative conductance is 0.1 mol m-2 s-I . What 
is the coldest temperature that the sleeping bag can be used at if the person 
maintains a metabolic rate of 50 w/m2 and a body temperature of 37" C? 

Solution. The conductor network for the sleeping bag and surroundings 
is shown in the diagram. Equations (6.10) and (6.11) can be used to 
calculate the total thermal conductance. The overall conductance is: 

1 
gu = I 1 1 = 0.04 mol m-2 s-' 

0.25f0.1 + + 
Now rearrange Eq. (6.8) to find the required temperature: 

If the air temperature drops below -5.5" C, either the person's body 
temperature will drop, or the metabolic rate must increase. 

Problems 

6.1. A leaf is at 27" C and is in air at 30" C with 0.2 relative humidity. The 
stomata1 conductance is 250 mmol m-2 s-' and the boundary layer 
conductance is 900 mmol m-2 s-' . What is the rate of water loss? 

6.2. What is the heat flux density in problem 6.1? Assume the boundary 
layer conductance for heat is the same as for vapor. 

6.3. Your body temperature is 37" C. If your average heat loss while sitting 
in a 22" C room is 80 W/m2, what is the total (boundary layer, cloth- 
ing, and tissue) conductance? If your average tissue conductance is 
1 mol m-2 s-', what is your average skin temperature? 
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for Heat and 

Mass Transfer 7 
This chapter continues the discussion of transport, and focuses on meth- 
ods for computing the conductances and resistances needed for the 
calculations in Ch. 6. We first discuss conductances on the smallest spa- 
tial scale; molecular diffusion. It is by this process that heat and mass are 
transported in still air or water, such as in parts of the lungs of animals, 
in soils, in the substomatal cavities of leaves, and in animal coats. The 
equations for turbulent transport of heat and mass on larger scales in the 
atmosphere are similar to those for molecular diffusion, so those equations 
are discussed following the molecular diffusion equations. After diffu- 
sion processes are discussed, we consider an intermediate scale; namely, 
convective heat and mass transfer theory as it applies to fluids moving 
over plates, cylinders, and spheres (simulating leaves, stems, fruits, and 
animals). 

7.1 Conductances for Molecular Diffusion 

To determine a conductance for molecular transport, we return to Fick's 
law for steady diffusion of some component j (Eq. (6.5)): 

where Dj  is the diffusivity and dCj/dz is the concentration gradient. 
Assume that all of the material that diffuses across an imaginary boundary 
at z originated at a surface with area A(z,) where the flux density is F (zs), 
which is assumed to be constant, then: 

where A(z) is the area of the surface at z. Integration of Eq. (7.2), 
combining the result with Eq. (6.7), and solving for conductance gives: 

where za is at the outer edge of the layer for which the diffusive con- 
ductance is being computed. Equation (7.3) is easily solved for several 
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simple shapes. For planar diffusion, such as diffusion through long, nar- 
row tubes or from large, plane surfaces A(z) = A(z,). The integration is 
then trivial, giving 

with Az being the distance from the source (z, = 0) to the point at which 
C j  is measured. The decrease in concentration is linear with distance from 
the surface. 

For diffusion from a spherical surface, A(z) = 4nz2 (z is the ra- 
dial distance from the center of the sphere). Using Eq. (7.3) gives the 
conductance at a distance za from the center of the sphere. It is: 

where the radius of the spherical surface is z,. In the limit, as z, becomes 
very large, the ratio of the radii in the denominator approaches zero and the 
conductance approaches the value for planar diffusion through a distance 
equal to the radius of the sphere. 

For a cylindrical surface with unit length A(z) = 2nz (z is the radius 
of the cylinder). Integration of Eq. (7.3) gives: 

where z, is the radius of the cylindrical exchange surface and za is the 
distance from the cylinder axis to the point of concentration measurement. 
The logarithm term does not approach any limit as Z, increases, so there 
is no lower bound to the conductance of a cylinder as there is with a 
sphere. The rate of decrease with distance from the surface does become 
small, however, at large distances. It is interesting to note the similarity in 
form among the three conductance equations. Each has a density times a 
diffusivity divided by a length. In the case of the sphere and the cylinder 
the length is the radius of the object multiplied by a factor. The factor 
ranges from 0 to 1 for the sphere. For the cylinder, the theoretical upper 
limit is infinity, but the practical upper limit is 5 or 6. Equation (7.3) 
could, of course, be integrated for other shapes, but these three cover 
most situations of interest to us in this book. 

7.2 Molecular Diffusivities 

Before using Eqs. (7.4) through (7.6), values for Dj are needed. These 
depend on the properties of the diffusing substance and the medium in 
which diffusion occurs. Molecular diffusion coefficients for heat, water 
vapor, oxygen, and C02 in air are given in Table A. 1. Available data for 
diffusion in water are given in Table A.2. The diffusivities in air at 20" C 
are also shown in Table 7.1. 
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TABLE 7.1. Viscosity and difksivities of heat, 
water vapor, carbon dioxide, and oxygen for air 
at 20" C and 10 1 kPa pressure. 

Molecular Diffusivity 
weight (glmol) (m2/s) 

viscosity - 1.51 x 
heat - 2.14 x 
water vapor 18.02 2.40 lo4 
carbon dioxide 44.01 1.57 x lo-' 
oxygen 32.00 2.00 lo4 

The molecular processes which cause diffusion result in similar values 
for all of the diffusivities. For mass transport, Graham's law states that 
the ratio of the diffusivities is equal to the inverse of the square root of the 
ratio of the molecular weights. Comparing diffusivities of water vapor, 
oxygen, and carbon dioxide, it can be seen that their ratios approximate the 
predictions from Graham's law. Carbon dioxide has the largest molecular 
weight and has the smallest diffusivity. 

Diffusivity changes with temperature and atmospheric pressure. Fuller 
et al. (1966) suggest the following 

where D j(293.16 K, 101.3 kPa) represents the appropriate diffisivity 
from Table 7.1 and pa is the atmospheric pressure from Eq. (3.7). Sub- 
stituting this into Eqs. (7.4) through (7.6), and using Eq. (3.3) for the 
density, shows one of the big advantages of using mole fractions in the 
transport equations. The pressure terms divide out, so that there is no 
pressure dependence of the conductance, and much of the temperature 
dependence divides out so that there is only 0.25%/C left, which can often 
be neglected. (Note: The 0.25%/C comes from a dependence on T ~ . ~ ~  SO 

that (301O.~~ - 3 0 0 ~ . ~ ~ ) / ( 3 0 0 . 5 ~ . ~ ~ )  = 0.0025). 

Example 7.1. The finger of a wool glove has a diameter of 3 cm. The 
diameter of a person's finger inside the glove is 2 cm. If the wool acts 
like a layer of still air around the finger, what is the conductance of the 
glove finger at 20" C and 100 kPa? 

Solution. The finger approximates a cylinder with z, = 0.01 m and 
za = 0.015 m. Using Eq. (7.6), the conductance is: 

41.0 3 x 2.14 x 10-I $ mol 
g~ = = 0.219 - . 

0.01 m ln m2 s 
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Using Eq. (7.4) the conductance of a similar thickness of still air in a 
plane can be computed. The conductance is 0.177 mol m-2 s-', about 
80 percent of the cylindrical value, so curving the insulation around the 
finger results in 20 percent more heat loss than if the material were flat. 
This is one reason why a mitten keeps fingers warmer than a glove. The 
actual conductance of a fiber layer like this can be more than twice the 
conductance of a similar thickness of still air because of radiative and 
convective transport within the material, but the conduction through the 
air provides a good starting point for the calculation of overall conduc- 
tance. We return to this subject later after developing the tools to analyze 
these other modes of heat transport. 

7.3 Diffusive Conductance of the Integument 

The waterproof coating that covers most forms of terrestrial life plays 
a key role in maintaining a favorable water balance. The most effective 
of these coatings are made up of lipids or waxes, but layers of hair and 
other dry materials also impede evaporation. We consider three situations 
involving gas diffusion through the integument. The first is diffusion 
through a layer of still air, such as an animal coat. The second is diffusion 
through a cuticle made up of lipid layers. The third is diffusion through 
pores in a cuticle. 

The first case is one that clearly involves diffusion of gases in air, so 
the equations just derived apply. The presence of the hair tends to keep 
the air still and impede convection, but the fraction of volume taken up 
by the hair has little effect on the area available for diffusion. In the 
second case, the water is not diffusing in air, but through the lipid layers 
of the cuticle. The proper diffusivity to use is therefore not the one for air, 
but the one for the membrane through which diffusion is occurring. The 
driving forces, however, are the same as those for diffusion in air, and 
conductances are obtained simply by using measured rates of water loss 
and vapor concentration differences. We are not able to derive equations 
to compute values for these conductances, but their values tend to be 
conservative (i.e., do not change with ambient conditions) so observed 
values are useful for calculations. Table 7.2 gives a sample of values for 
arthropod, animal, and plant surfaces. 

An example of the third case is the transport of gases through stomata 
in leaves. The conductance of a single stomatal pore is given by Eq. (7.4), 
where Az is the pore depth. To account for nonplanar diffusion just outside 
the stomatal pore an end correction is applied. The overall conductance 
of the perforated surface is given by (deMichael and Sharp, 1973): 

where A is the area of a single pore, n is the number of pores per square 
meter, and Lo is the pore perimeter. Equation (7.8) is valid for water 
vapor, COz, or oxygen when the appropriate diffusion coefficient is used. 
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TABLE 7.2. Integument vapor conductances (from Monteith and Campbell, 
1980; Monteith and Unsworth, 1990; and Patten et al., 1988). 

Arthropods 
Lithobius sp. 
Porcellio scaber 
Hemilepistus reaumuri 
Glossinia palpalis 
Ornithodoms maubata 
Androctonus australis 

Mammals 
Homo sapiens 
Acomys sp. 

Reptiles 
Caiman sp. 
Terrapene sp. 
Gophems sp. 

mmol m-2 s-I 
32. 
13. 

2.8 
1.4 
0.48 
0.096 

5.4 
2.8 

7.5 
1.3 
0.35 

Birds 
Melopsittacus indulatus 
Excalifactoria chinensis 
Eggs, several species 

Vegetables & fruits 
potato tuber 
apple, Red Delicious 
apple, Golden Delicious 
Tomato 
Orange 
Radish 

Plant leaves 
Beta vulgaris 
Gossypium hirsutum 
Betulua vermcosa 
Pinus monticola 
maize 
soybean 
Quercus robur 

mmol m-2 s-I 
4.9 
2.1 
0.55 

0.77 
1.2 
2.4 
5.5 
5.8 

275 

open closed 
260 10 
375 13 
360 5.9 
330 17 
330 30 
450 40 
41 2.1 

Interactions between diffusing species and convection corrections are 
important in some studies (Jarman, 1974) but are not discussed in detail 
here. 

In practice, Eq. (7.8) is seldom used to find stomatal conductance 
because it is harder to determine pore diameters, lengths, and numbers 
than it is to directly measure the stomatal conductance. Table 7.2 gives 
examples of stomatal conductances of leaves, for both open and closed 
stomata. When stomata are tightly closed, the diffusive conductance is 
mainly the conductance of the cuticle. 

Example 7.2. Leaves of some species have a thick pubescent layer over 
the entire surface of the leaf. If this layer creates a 1 mm thickness of still 
air over the surface of the leaf, how does the conductance of that layer 
compare with the stomatal conductance of a typical leaf! 

Solution. Using Eq. (7.4), the conductance of a 1 mm thick layer of still 
air is 

mol 5 m2 
41.4= x 2.4 x 10- mol 

gvc = = 0.99 - . 
0.001 m m2s 

The resistance is rUc = l/gv, = 1/0.99 = 1.01 m2 slmol. Stomata1 
conductances for several of the species listed in Table 7.2 are around 
300 mmol m-2 s-' when open and 10 rnrnol m-2 s-' when closed. The 
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corresponding resistances are 3.3 and 100 m2 slmol. The resistance of 
the stomata plus pubescence is therefore 4.3 m2 slmol for open stomata 
and 101 m2 slmol for closed stomata. The pubescence could therefore 
decrease transpiration by about 25 percent when stomata are open, but 
would have a negligible effect when stomata are closed. 

Example 7.3. Consider stomatal density on upper and lower sides of 
corn, oat, and bean leaves and calculate the leaf stomatal conductance 
using number density (n), pore length ( l ) ,  and pore width (w). 

Species stomata per nun2 stomata per m d  length width 
adaxial side abaxial side (pm) (pm) 

bean 40 280 13 7 
corn 52 68 19 5 
oat 25 23 38 8 

Solution. If the stomata are considered ellipses where 

and the pore depth is assumed to be Az = lOpm, then for bean leaves: 

40 x m-2 x 2.4 x lou5 m2 s-' x 41.4 mol mP3 
g,,(adaxial) = 

lox lo-6 m 3.14 
n .5~10-12  m2 + 2x32.8~10-~ m 

mol 
= 0.212 - 

m2s 
g,, (abaxial) = 1.47 mol mF2 s-' 

For oat leaves: 

g,, (total) = 0.41 + 0.38 = 0.79 mol m-2 s-'. 

The calculation for corn is left as an exercise for the reader. These conduc- 
tances are considerably larger than values shown in Table 7.2. Obviously, 
direct comparisons are not warranted here because we do not know the 
stomatal density and sizes for the leaves in the table. It is possible, how- 
ever, that stomata interact in some way not accounted for in Eq. (7.8). 
Alternatively, the disagreement between this calculation and measure- 
ments may arise from the presence of additional resistances to diffusion, 
including the substomatal cavity, or uncertainties in the measurements of 
pore size and density. 
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7.4 Turbulent Transport 

We return now to the subject of Ch. 5 and consider the transport of heat 
and mass in the atmosphere by turbulence. The fluctuations, or eddies, 
in the atmosphere are, in a sense, like molecules in a gas. They bounce 
about with random motion, but are carried along with the wind. It is these 
fluctuations that transport heat, water, momentum, etc. in the atmosphere. 
If a packet of air at one level, with a given temperature and momentum, 
jumps to a different level in the atmosphere, the old heat and momentum 
are carried to the new level. This is analogous to the diffusion process in 
a gas, except that diffusion involves jumps of single molecules. Because 
heat, momentum, and mass are transported by the jumps between layers 
of these packets of air, the flux can be measured by averaging the product 
of fluctuations of temperature, horizontal wind, or mass, and vertical 
wind. This method of measuring fluxes is called eddy correlation or eddy 
covariance. The equations for determining the fluxes are: 

- 
t = -PU'W' (7.9) 
- 

H = ficpwlT' (7.10) 
- 

E = fiw1C; (7.11) 

where z is the momentum flux to the surface (or drag of the wind on the 
surface) often referred to as the shear stress, His the heat flux density, E is 
the flux density of water vapor, and C: is the mole fraction given by e'lp,. 
The primes indicate fluctuations about the mean, and overbars indicate 
averages taken over 15 to 30 minutes. A simple understanding of these 
equations can be obtained by considering the meaning of "fluctuations 
about the mean." In Eq. (7.9), if an eddy fluctuation is downward (w' c 
0), then the horizontal wind fluctuation associated with this downward 
eddy will tend to be greater than the mean wind (u' > 0) because the 
horizontal wind speed tends to be larger at heigherheights (Fig. 5.3). Thus, 
downward moving eddies tend to carry higher horizontal wind speeds 
with them and upward moving eddies tend to carry lower horizontal wind 
speed upward into the faster moving stream. This means that the product 
u'w', which is the covariance between u and w, is negative and we put 
a negative sign in Eq. (7.9) because by arbitrary convention we want to 
define a momentum flux toward the surface (in the negative z direction) 
as positive. Of course the correlation between u' and w' is not perfect. 
In general, the correlation between u' and w' (~'w'/(a,a,)'/~) typically 
varies from about 0.1 to 0.4. The same kind of interpretation of vertical 
velocity fluctuations and temperature or gas concentration fluctuations 
is possible. Instruments must have a very fast response to make these 
measurements, and measurements must be sampled at least five to ten 
times per second to properly sample the eddies that are responsible for 
transport. If these requirements can be met, eddy correlation is a very 
attractive method for direct measurement of transport in the atmosphere. 

In each of these flux equations, the transport is accomplished by fluc- 
tuations in the vertical wind component. The ability of the atmosphere to 
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transport heat or mass depends directly on the size of the vertical fluc- 
tuations. Because of the proximity of the surface, the magnitude of w' 
is limited near the surface. Farther from the surface, transport is more 
efficient because the eddies are larger. Transport is therefore expected to 
increase with height. Increased intensity of turbulence will also increase 
vertical transport. Since turbulence is generated by mechanical action of 
wind moving over a rough surface, transport should increase as wind 
speed and surface roughness increase. It is also known that turbulence is 
generated by buoyancy, so when there is strong heating at the surface, 
turbulent transport should increase. Strong cooling at the surface should 
result in reduced transport. 

Both the turbulence and the heat or mass being carried by it are gen- 
erated or absorbed at the surface. The sources and sinks are patchy, so 
near the surface the concentrations are not well related to the transport. 
The mixture becomes more homogeneous with distance from the sur- 
face, and fluxes can then be predicted from concentration gradients. The 
equations used for this are similar to those used for molecular transport, 
but, of course, the mechanism for transport is quite different. We simply 
define transport coefficients for turbulent diffusion that replace the molec- 
ular viscosity and diffusivities in Eqs. (6.1) through (6.3). The resulting 
equations are the basis for what is known as K-theory. The equations are 

where KM is the eddy viscosity, KH is the eddy thermal diffusivity, and 
K, is the eddy vapor diffusivity. These are steady-state flux equations 
for the surface boundary layer of the atmosphere. The flux of heat or 
mass is intuitive, but the flux of momentum is somewhat less intuitive 
for most people. From introductory physics, momentum is mass times 
velocity. With a solid object of a given mass that is moving at some 
velocity, the momentum is obvious. With a fluid these quantities are less 
obvious because the amount of mass depends on what volume is being 
considered; further, a given mass of fluid can have a range of velocities. 
Therefore with fluids the mass per unit volume is used instead of just 
mass so what is referred to as momentum is actually momentum per unit 
volume or concentration of momentum (pu). The flux of any quantity 
can be written as a product of the concentration of that quantity times 
the appropriate velocity. In the surface layer, the appropriate velocity is 
referred to as the friction velocity, which is represented by the symbol 
u*(m/s), and is defined as u* = (tip) ' I2. Effects of wind speed, surface 
roughness, and surface heating are all included in the shear stress term 
(TI. 
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Equations (7.12) through (7.14) are not very useful in this form because 
there is no way of knowing what values to give the coefficients. From the 
discussion on turbulent mixing in the surface boundary layer, it is known 
that K will increase with height above the surface, wind speed, surface 
roughness, and heating at the surface. In the surface boundary layer, at 
steady state, the flux densities, t, H, and E are assumed to be independent 
of height. Increases in the K coefficients with z will therefore be balanced 
by corresponding decreases in the gradients. 

It can be assumed that K has some value, characterized by surface 
properties, at the exchange surface (where z = d + ZM or z = d + ZH, 
etc.) and increases linearly with u* and z. Based on these assumptions, 
the form of the Ks must be: 

As in Ch. 5, 0.4 is von Karman's constant. The 4s are dimensionless 
influence factors which equal one for pure mechanical turbulence (no 
surface heating or cooling). These equations make the meaning of the 
roughness lengths more apparent. When z = d + ZM, KM, is equal to 
0.4u*zM. The roughness length therefore just represents a characteristic 
length which makes the eddy viscosity equal to the value it has at the 
exchange surface. 

If Eqs. (7.15) are substituted into Eqs. (7.12) through (7.14), and the 
resulting equations integrated from the height of the exchange surface 
d + ZM to some height z the resulting equations describe the profiles 
of wind, temperature, and vapor concentration with negligible surface 
heating (VM = VH = p, = 1): 

E Z - d  
C,, = C,,(d + z,) - In -. 

0 . 4 ~ ~  ZV 

The wind and temperature profile equations have been seen before in 
Chs. 2 and 5. Equations similar to these could be derived for other 
substances being transported by atmospheric turbulence (such as ozone, 
SO2, volatile chemicals, etc.). Equations (7.16) through (7.18) represent 
flux-profile relationships in the atmospheric surface layer above soil or 
vegetation. Typically this surface layer extends to distances of 10 to 100 
m above the surface. Above this surface layer is another layer referred to 
as the planetary boundary layer, which has quite different properties. 

In Ch. 5 we discuss ways to determine values for ZM, the momentum 
roughness length. The roughness lengths for heat, vapor, and other scalars 
are assumed to be equal to each other, and are sometimes assumed to equal 
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z ~ .  However, the process of momentum exchange within the canopy dif- 
fers from the scalar exchange processes (Garratt and Hicks, 1973), and 
these differences can be modeled by adjusting the scalar roughness pa- 
rameters. For our computations of aerodynamic conductance we assume 
that: 

ZH = Zv = 0 . 2 ~ ~ .  (7.19) 

7.5 Fetch and Buoyancy 

Now that we have equations describing turbulent transport, we need to 
look briefly at their limitations. We started by assuming that the wind was 
at a steady state with the surface (that there were no horizontal gradients). 
When wind passes from one type of surface to another it must travel some 
distance before a layer of air, solely influenced by the new surface, is built 
up. The height of influence increases with downwind distance. The length 
of uniform surface over which the wind has blown is termed fetch, and 
the wind can usually be assumed to be 90 percent or more equilibrated 
with the new surface to heights of 0.01 x fetch. Thus, at a distance 1000 
m downwind from the edge of a uniform field of grain, expect the wind 
profile equations to be valid to heights of around 10 m. 

The effect of thermally produced turbulence on transport was alluded 
to earlier, but its quantitative description was not given. The equations 
derived to this point apply only for mechanically produced turbulence, so 
they are appropriate only for adiabatic conditions. Strong heating of the 
air near the surface of the earth causes overturning of the air layers, with 
resultant increases in turbulence and mixing. Conversely, strong cooling 
of these air layers suppresses mixing and turbulence. Thus convective 
production or suppression of turbulence is directly related to sensible 
heat flux (H) at the surface. When H is positive (surface warmer than 
the air) the atmosphere is said to be unstable, and mixing is enhanced. 
When H is negative, the atmosphere is said to be stable, and mixing 
is suppressed by thermal stratification. When surface heating or cooling 
occurs, corrections to Eqs. (7.16) through (7.18) are made and referred 
to as "diabatic corrections." 

The main components of a (random) kinetic energy budget for a steady- 
state atmosphere can be written as (Lumley and Panofsky, 1964): 

where g is the gravitational acceleration. The first term represents me- 
chanical production of turbulent kinetic energy, the second term is the 
convective production, and these two together equal the viscous dissipa- 
tion of the energy, 8. The ratio of convective to mechanical production of 
turbulence can be used as a measure of atmospheric stability: 
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The diabatic flux and profile equations can now be written as functions 
of stability and the other parameters already discussed. Only the wind 
and temperature equations are given. Fluxes and profiles of water vapor, 
carbon dioxide, and other scalars are similar to those for temperature. 

For the diabatic case, the 4s (diabatic influence factors) in Eqs. (7.15) 
increase fromunity with positive 5 (stable atmosphere) and decrease with 
negative 5 .  Yasuda (1988) gives the following equations. 

For unstable conditions: 

For stable conditions: 

The flux equations are integrated using these corrections to obtain the 
corrected profile equations. The diabatic profile equations are: 

where \IIM and \IIH are the profile diabatic correction factors. The diabatic 
correction factors are zero for neutral conditions, and can be derived from 
the integration for the stable case. For unstable flow the integration cannot 
be carried out analytically, so it is done numerically and an empirical 
function is fit to the result. The profile diabatic correction factors are as 
follows. 

For unstable flow: 

For stable flow: 

\IIM = \IIH = 61n(l + 5 ' ) .  (7.27) 

The diabatic corrections are shown in Fig. 7.1. 

7.6 Conductance of the Atmospheric Surface 
Layer 

An important result of the previous section is the derivation of the profile 
equations which allow interpolation and extrapolation of atmospheric 
variables. Another important result is the development of an equation for 
computing the conductance of the atmospheric surface layer. Again, only 
the equation for heat is given, since the equations for all other scalars are 
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- 1 0 
stability 

FIGURE 7.1. Diabatic influence and profile correction factors for heat and 
momentum as a function of stability (c). 

the same. Rearranging Eq. (7.25) and substituting Eq. (7.24) for u* gives: 

H =  
0.4~fic,u(z>[T(d + ZH) - T(z)l 

[h($ + .MI [h($ + .HI ' 

The conductance between the "canopy surface" (at height d + ZH) and a 
height z above the canopy is therefore 

Clearly the conductance depends on the height of the top of the air layer 
being considered. 

Many of the computations performed simply ignore the profile diabatic 
correction factors (they are zero for neutral stability). When they are 
important, they are a bit of a challenge to compute, since the fluxes depend 
on the correction factors, but the correction factors depend on the heat 
flux density. One has to use an iterative approach and usually a computer 
to obtain a result. To give some idea of the importance of the stability 
correction, Fig. 7.2 shows atmospheric conductance for a range of wind 
speeds and canopy;iir temperature differences. It can be seen that for 
stable conditions (canopy cooler than air) and low wind speed, the stability 
effect can be very large. At high wind speeds there is a smaller effect, 
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Canopy Temperature - Air Temperature (C) 

FIGURE 7.2. Effects of stability and wind on atmospheric boundary layer con- 
ductance. Measurement height is assumed to be twice the height of canopy, so if 
z=2m, thenh= 1m,d=0.65m,andzn, =O.lm. 

and the canopy also remains closer to air temperature because of the 
high conductance. It is usually assumed that stability corrections are not 
important for wind speeds greater than 3 to 4 rnls. However, for low wind 
speeds during the night they can be very important. 

7.7 Conductances for Heat and Mass Transfer 
in Laminar Forced Convection 

In the first part of this chapter transfer of heat and mass by molecular 
diffusion is discussed. The fluid was assurnedstill or moving with laminar 
flow over an infinitely long surface so that there were no concentration 
gradients in the direction of flow. We now consider convective transport to 
or from a small object such as an animal's body or a leaf that is immersed 
in a fluid such as air. The assumptions made for molecular diffusion do not 
apply, but Eqs. (6.7) and (6.8) still apply ifthe conductances or resistances 
are properly defined. Our task here is to relate these terms to properties of 
the fluid and the surface. The spatial scale discussed here is between the 
scale of molecular diffusion (<mm) and the atmospheric surface layer 
(m to km), and ranges typically from mm to m. 

A fimdamental analysis of convective transport is extremely compli- 
cated and has not been accomplished for many surface shapes. For this 
reason an empirical approach is used. To make the results of empirical 
studies apply to as many different situations as possible, dimensionless 
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TABLE 7.3. Some dimensionless groups for heat and mass transfer. 

Name Equation 

Reynolds number Re = $ 

Grashof number Gr = gd33ST -TJr 

Prandtl number Pr = -41- 
DH 

Schmidt number Sc = 2 
Dl 

Nusselt number Nu = gH" 
PDH 

Explanation 

Ratio of inertial 
viscous forces 

Ratio of a buoyant 
force times an inertial 
force to the the square 
of a viscous force 

Ratio of kinematic 
viscosity to thermal 
diffusivity 

Ratio of kinematic 
viscosity to mass 
diffusivity 

Dimensionless 
conductance 

Symbols 

u free stream 
fluid velocity 
v kinematic 
viscosity 
d characteristic 
dimension 

g gravitational 
constant 
ST Temperature 
difference 
T kelvin 
temperature 

DH thermal 
diffusivity 

Dj molecular 
diffusivity of 
species j 

p molar density 
g~ boundary 
layer 
conductance 

groups of the variables have been formed and correlated empirically. By 
using these dimensionless groups, the results of a study on, say, heat 
transfer to water by a rod with a diameter of 1 cm, can be used to calcu- 
late heat transfer from a person's arm to air. It is therefore convenient to 
relate conductances to the appropriate dimensionless groups. Once this is 
done, the relationships between the dimensionless groups for describing 
the transport processes can be obtained directly from the engineering lit- 
erature. The dimensionless groups that we use are given in Table 7.3. The 
Reynolds number, besides being useful for correlation of data on heat and 
mass transport, also gives an indication of whether the flow is laminar or 
turbulent. At low Re viscous forces predominate and the flow is laminar. 
At high Re, inertial forces predominate and the flow becomes turbulent. 
The critical Re at which turbulence starts is around 5 x lo5 for a smooth, 
flat plate under "average" conditions. 

Forced convection refers to the condition in which a fluid is moved 
past a surface by some external force (the analysis would be the same 
for a surface moving through a stationary fluid). Free convection, on the 
other hand, refers to fluid motion brought about by density gradients in the 
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fluid as it is heated or cooled by the exchange surface. The boundary layer 
heat conductance for one surface (or "face") of a rectangular, flat plate 
with length d (note that the same symbol is used for the characteristic 
dimension in convection and the zero plane displacement in turbulent 
transport; do not confuse them), is 

This equation is valid for any fluid, and requires only the correct vis- 
cosity, density, and difisivity. If the Reynolds and Prandtl numbers are 
independent of pressure and temperature, then Eq. (7.29) has no pressure 
dependence, and the same temperature dependence as molecular d i f i -  
sion. The fluid we are most interested in is air. Using the values from 
Table A.2 for air, Eq. (7.29) becomes 

The resistance of the boundary layer for heat transfer is the reciprocal of 
Eq. (7.30) 

The resistance for mass transfer is similar. For any fluid the relationship 
is: 

The conductances in air for vapor, carbon dioxide, and oxBen are: 

g,, = 0.147 - J :  

The corresponding resistances are: 
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7.8 Cylinders, Spheres and Animal Shapes 

The relationships for conductance and resistance that were just presented 
can be derived from hndamental principles, but they apply only for trans- 
port from one side of a rectangular plate. With suitable adjustments in 
d, these could be used for leaves, but they would not necessarily apply 
for other surface shapes. So far it has not been possible to derive similar 
relationships from fundamental principles for objects like cylinders and 
spheres, so these relationships have been obtained empirically. Monteith 
and Unsworth (1990) and Simonson (1975) give examples of these re- 
lationships which are typical of those found in books on heat transfer. 
Rather than present these relationships here, we have plotted the ratio of 
the boundary layer conductance for a cylinder or a sphere to that for a 
rectangular plate. These ratios are shown in Fig. 7.3. Note that for a wide 
range of Reynolds numbers the ratio is within f 20 percent of unity. The 
Reynolds numbers of animals, fruits, etc. in outdoor wind are typically 
in the range shown in Fig. 7.3. Because of free stream turbulence in the 
atmosphere and other uncertainties, a 20 percent uncertainty in boundary 
layer conductance often is not bad. We therefore use the flat plate equa- 
tion for all shapes of object. For improved estimates we can compute a 
Reynolds number and obtain a correction factor from Fig. 7.3. The cor- 
rect conductance is just the flat plate conductance multiplied by the ratio 
from the figure. The characteristic dimension for computing the Reynolds 

10 100 1000 10000 100000 
Reynolds Number 

FIGURE 7.3. Ratio of cylinder or sphere conductance to plate conductance for a 
range of Reynolds numbers. 
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number or for computing the conductance is the diameter of the cylinder 
or the sphere. If the wind is blowing parallel to the axis of the cylinder, 
then it acts just like a flat plate, and the characteristic dimension is its 
length. 

Another approach was taken by Mitchell (1976). When comparing 
measured conductances for animal shapes with the conductance of a 
sphere, it was found that conductances of shapes and sizes ranging from 
spiders and insects to cows were well represented by the relationship 

The characteristic dimension used by Mitchell for this calculation is the 
cube root of the volume of the animal. Equation (7.30a) is preferable to 
Eq. (7.30) except when the animal shape actually approximates a cylinder. 

7.9 Conductances in Free Convection 

Transport by free convection occurs whenever a body at one temperature 
is placed in a fluid at a higher or lower temperature. The heat transfer 
between the body and the fluid causes density gradients in the fluid, and 
these density gradients cause the fluid to mix. The transfer processes are 
similar to those in forced convection except the fluid velocity monaton- 
ically increases with distance from the surface in forced convection, but 
it first increases and then decreases to zero in free convection. 

For laminar free convection, an expression for conductance that is 
adequate for cylinders (horizontal or vertical), spheres, vertical flat plates, 
and heated flat surfaces facing up or cooled surfaces facing down is: 

For cooled flat surfaces facing up or heated surfaces facing down the heat 
transfer is only about half as efficient so the constant 0.54 becomes 0.26. 
Again, this applies for any fluid. Substituting for the properties of air we 
obtain: 

The resistance is just the reciprocal of Eq. (7.36). 
The resistances for mass transfer by free convection are obtained by 

substituting the appropriate diffusivity and Schmidt number in Eq. (7.35). 
The free convection conductances for water vapor, C02 and 0 2  are 1 .O9, 
0.75, and 0.95 times the heat transfer conductance (Eq. 7.35). 

Example 7.4. Find the flux densities of heat, CO2, water vapor, and 
oxygen for a leaf under the conditions shown in the following table. 
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Air Leaf 

Temperature 20" C 30" C 
wind speed 3 rnls 
vapor concentration 15 mmoVmol 
carbon dioxide 350 pmollmol 70 pmollmol 
concentration 
oxygen concentration 2 10.0 mmoVmol 2 10.2 mmollmol 

Assume the leaf has a characteristic dimension in the direction of wind 
flow of d = 0.042 m and that surface conductances (stomatal) to water 
vapor, C02, and 0 2  transfer are 0.2,0.13, and 0.18 rnol m2 s-'. 

Solution. The water vapor concentration at the leaf surface is the satura- 
tion concentration at leaf temperature. From Table A.3 the vapor pressure 
is 4.2 kPa, so the mole fraction (at 10 1 Ha)  is 43 mmol/mol. The Reynolds 
number is Re = udlv  = 3 d s  x 0.042 d1.51 x = 8.3 x lo3. 
The flow apparently is laminar. All of the conductances except heat in- 
volve two conductors in series, the stomatal and the boundary layer. The 
conductances all involve: 

The conductances are: 

1 
gv = 1 = 0.172 mol m-2s-1 

0.147x8.47 + a 
1 

gc = 1 1 = 0.114 mol m-2s-1 
0.11x8.47 + 0.13 

1 
go = I =0.155m0lrn-~s-'. 

0.13x8.47 + 
The fluxes are: 

rnol 
H = cpg~(Ts  - Ta) = 1.14 - x 29;3 - (30°C - 20°C) 

m2 s mol C 

rnol 
E = gu(Cus - Cua) = 0.172- x (0.042 - 0.015) 

m2 s 
mmol 

= 4.6 - 
m2s 

rnol 
Fc = gc(Ccs - Cca) = 0.114-(70 x - 350 x 

m2 s 
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pmol 
= -32- 

m2s 
mol 

Fo = go(Cos - CO,) = 0.155- x (0.2102 - 0.2100) 
m2 s 

pmol 
= 3 1 - .  

m2 s 
The negative sign on the carbon dioxide flux means that C02 is being 
taken up by the leaf. The fact that the oxygen and C02 fluxes are nearly 
equal in size and opposite in sign is the result of the stoichiometry of 
the photosynthesis reaction. One oxygen molecule is produced per C02 
molecule. 

7.10 Combined Forced and Free Convection 

Almost all convective heat transfer processes in nature involve both forced 
and free convection. Usually one or the other process dominates and the 
conductance used is that calculated for the dominant process. The crite- 
rion normally used to determine which process is dominant is to determine 
the ratio ~ r / R e ~ .  If this ratio is small, forced convection dominates. When 
the ratio is large, the opposite is true. When the ratio is near one, both 
forced and free convection must be considered, and the value of the re- 
sistance depends on whether the direction of the forced convection flow 
is such that it enhances or diminishes free convection. Additional detail 
on the mixed regime can be found in Kreith (1965). 

Example 7.5. Find Gr for the previous example, and compute the ratio 
cr/Re2. 

Solution. From Table 7.3: 

Forced convection is obviously dominant. 

7.1 1 Conductance Ratios 

Situations often arise when the conductance for one species is known and 
we need to know the conductance for another. For example, we can easily 
determine the stomatal conductance for water vapor, but cannot determine 
it for COz. Is it possible to calculate one conductance if another is known? 
Considering any of the molecular diffusion equations (Eqs (7.4) through 
(7.8)), the ratio of the conductances is equal to the ratio of the diffusivities 
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TABLE 7.4. Conductance ratios for 
carbon dioxide and water vapor. 

Process Ratio g ~ / &  

molecular diffusion ( D c /  D,)' 0.66 
free convection ( D , / D , ) ~ / ~  0.73 
forced convection ( D , / D , ) ~ / ~  0.75 
turbulent transport (Dc /  D,)' 1.0 

of the diffising species. For free convection the ratios ofthe mass transport 
equations which are similar to Eq. (7.35) are taken. In addition to the ratios 
of the diffisivities, there are also the ratios of the Schmidt numbers. The 
result is that the conductance ratio is equal to the diffisivity ratio to 
the 314 power. Similarly, taking ratios using Eq. (7.32), and expanding 
the Schmidt numbers gives the conductance ratio for forced convection. 
The power of the diffusivities is now 213. Finally, for turbulent transport 
Eq. (7.28) is used. There is no diffisivity dependence in these equations, 
so the power is zero. These facts are summarized in Table 7.4, and values 
for the ratio of C02 to water vapor conductance are given. 

This exercise has produced a set of useful numbers, but it has not 
given much explanation for why the conductance ratios differ for the 
different processes. To get a little more insight into this, think of each 
process as involving both diffusive and convective (meaning transport by 
a moving fluid) transport. Differences in the size of molecules is important 
in pure diffusion, and CO2 diffuses much slower than water vapor. As 
more and more of the transport occurs through fluid motion, the size of 
the molecules has less and less effect. In turbulent transport there is no 
effect. From Table 7.4 we see that even forced convection is still strongly 
dominated by diffusive processes at the surface. 

7.12 Determining the Characteristic Dimension 
of an Object 

For a rectangular plate, the characteristic dimension is the length of the 
plate in the direction the fluid is flowing. For a cylinder with its axis 
parallel to the wind the characteristic dimension is also its length. The 
characteristic dimension for cylinders and spheres is their diameter. A 
characteristic dimension for various animal shapes can be obtained by 
taking the cube root of the volume. For circular disks and various leaf 
shapes, the characteristic dimension is more difficult to determine since 
the width varies with distance along the leaf. The leaf can be divided into 
a large number of rectangular pieces, each with its own characteristic 
dimension, and these can be summed, with appropriate weighting, to 
give a characteristic dimension in terms of a measurable dimension of 
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TABLE 7.5. Calculation of characteristic dimension for 
various shapes. 

Object Diagram Explanation 

Rectangular 
plate or cylinder 
with axis 
parallel to wind 

Circular disk 

Intersecting 
parabolas (leaf 
shape) 

Sphere or 
cylinder (axis 
perpendicular to 
wind) 

Animal shape 

wind > 0 I w l  

wind 

d is the length 
of the plate or 
cylinder in the 
direction of flow 

d = 0.81w, 
where w is the 
disk diameter. 

d = 0.72w, 
where w is the 
maximum leaf 
width in the 
direction of 
wind flow. 

d is the diameter 
of the cylinder 
or sphere. 

d = V ' f 3 ,  V is 
animal volume. 

the leaf. For forced convection the characteristic dimension is computed 
from: 

where 1 is the length of the leaf perpendicular to the wind and d(y) indi- 
cates the variation of the leaf width with distance along the length of the 
leaf. Table 7.5 gives values for a circular disk and a leaf shape (intersect- 
ing parabolas) from Eq. (7.37). Leaves, of course, have many different 
shapes, and none of them exactly matches the overlapping parabolas in 
Table 7.5. Typically, however, a factor around 0.7 converts maximum di- 
mension in the direction of wind flow to characteristic dimension. This 
is also a typical ratio of the area of a leaf to the product of its length and 
width. 
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7.13 Free Stream Turbulence 

Most of the relationships presented so far describe conductances one 
would measure in a carefully constructed wind tunnel which minimizes 
the turbulence in the air. When turbulence is induced in the air that flows 
over the object, the conductance increases, often dramatically. Conduc- 
tances in wind tunnels with turbulence generated by placing obstructions 
upwind of the object are sometimes twice those for laminar flow. 

The outdoor wind is naturally turbulent, so the conductance of objects 
placed in natural wind is likely to be higher than would be predicted using 
the equations presented so far. The size of this enhancement is determined 
by the size of the object and the size of the eddies in the air. The eddy 
size increases with height in the atmosphere, so the enhancement should 
change with height. Mitchell (1976) measured convective heat transfer 
from spheres in the atmosphere and related the enhancement to the ratio 
of sphere diameter to distance above the ground. Mitchell's relation is 
shown in Fig. 7.4. For heights ranging from about 2 to 10 times the object 
diameter the enhancement is around 1.4, and this is the value we use for 
all outdoor computations. 

Summary of Formulae for Conductance 

The formulae given in this chapter are used frequently throughout the 
rest of the book. It is therefore convenient to summarize them in a single 
location. This is done in Table 7.6. 

10 

Height / Diameter 

FIGURE 7.4. Enhancement of conductance by free stream turbulence for spheres 
at various heights in natural wind. (from Mitchell, 1976). 



TABLE 7.6. Formulae for calculating conductances (mol rnV2 s-') for diffusion, convection, and turbulent transport in air. 

Process Heat lkansfer Vapor Transfer Other Mass Transfer 

conduction or diffusion 
(molecular processes) 

Forced convection (fluid 
moved past surface by 
external force) 

Free convection (fluid flow 
generated from temperature 
gradients) 

Eddy diffision or turbulent 
transport (wind over fields) 

Plane gH = a Plane g, = BDj 
A2 Plane gj  = 

Sphere g~ = Sphere g, = Sphere gj = - bDj 
&(I-  z )  &(I -  5 )  & ( I -  5 )  

Cylinder gH = a Cylinder g - -@k- b ~ .  
z,In 2 - rrin Cylinder g j  = 2 zs In 2 

g ~ ,  = 0.135fi g,, = 0.147fl g,, = 0.110fl 

go, = 0.130fi 

g ~ ,  = 0.050 ( 9 ) 114 
g,, = 0.055 ( )IJ4 gca = 0.038 ( 9 )'I4 

go, = 0.048 ( 9 ) 114 
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Problems 

7.1. Maximum width of a leaf in the direction of wind flow is 5 cm. Leaf 
temperature is 20" C in a 1 m/s wind when T, = 15" C. Find d, Re, 
Gr , g ~ , ,  and H. Is heat transfer mainly by forced or free convection? 

7.2. The wind speed at a height of 2 m is 5.6 m/s. Find the boundary layer 
(turbulent transport) conductance for a potato canopy that is 50 cm 
high. Assume neutral stability. 
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7.3. Find the heat flux density from your arm, at 33" C, to room air at 
22" C if there is no wind (free convection) and if the wind speed is 
2 mls. 

7.4. Compute the heat loss from a sheep to the air if its fleece is 5 cm 
thick and the diameter of the sheep's body (inside the fleece) is 25 
cm. Assume the fleece has twice the conductance of still air, the body 
temperature is 37" C, the wind speed is 4 mls, and the air temperature 
is 5" C. 

7.5. Compare thermal conductance of clothing at sea level with conduc- 
tance at 5000 m elevation. Is elevation likely to have a noticeable 
effect on heat loss through clothing? 

7.6. In Eq. (7.10) there is no minus sign as in Eq. (7.9). Based on the sign 
convention implied by Eq. (7.13), discuss the relationship between 
fluctuations of w and T and identify what conditions are associated 
with a flux from the soil surface to the atmosphere. 
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When the sun shines on the soil surface, some of the energy is absorbed, 
heating the soil surface. This heat is lost from the surface through con- 
duction to lower layers of the soil, through heating the atmosphere, and 
through evaporation of water. Heat transport from the surface to the at- 
mosphere was discussed in Ch. 7. This chapter considers heat transport 
into the soil. Some of the results from an analysis of heat transport in soil 
are presented in Ch. 2 to show typical temporal and spatial patterns of 
soil temperature. Here we show how those equations are derived and how 
they depend on soil properties. 

8.1 Heat Flow and Storage in Soil 

In analyzing heat flow in the soil or the atmosphere, it is usefbl to mentally 
divide the medium into a large number of thin layers, and consider the heat 
flow and storage in each layer. The amount of heat stored in a layer of air 
is small compared to the amount of heat transferred through it. Within the 
first few meters of the atmosphere the heat stored in the air is generally 
ignored and heat transfer processes are assumed to be approximately 
steady. The results of these assumptions are the equations developed in 
Ch. 7. 

In soil the storage term is much larger and cannot be ignored. The heat 
flow from one layer to the next is still computed using the Fourier law 
(Eq. (6.3)) but now the continuity equation must be solved simultaneously 
to find the temperature variation with depth and time. The continuity 
equation is: 

where p, is the density of the soil, c, is the soil specific heat, p,c, is 
the volumetric heat capacity, and G is the heat flux density in the soil 
(from Eq. (6.3)). The left-hand side of Eq. (8.1) represents the rate of 
heat storage in a layer of soil and the right-hand side represents the heat 
flux divergence, or rate of change of heat flux density with depth. 
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Combining eqs. 6.3 and 8.1 gives 

If thermal conductivity is constant with depth, k can be taken outside the 
derivative. We can also divide both sides by pscs to obtain a more familiar 
form of the heat equation: 

where 

is the soil thermal diffusivity. According to Eq. (8.3), the location in the 
soil where temperature will change fastest with time is the location where 
the change with depth of the temperature gradient is largest. 

In principle, solutions to Eq. (8.2) can simulate the behavior of soil 
temperature in space and time. The conditions for which analytic solutions 
can be obtained, however, are very restrictive, and do not represent real 
soil environments very well. Realistic conditions can be simulated by 
solving the equation numerically, but these solutions are not very useful 
for understanding the behavior of the system. We now look at a couple of 
simple solutions to Eq. (8.3). These are useful for understanding, at least 
qualitatively, spatial and temporal patterns in soil temperature. 

If the soil is assumed to be infinitely deep, with uniform thermal prop- 
erties, and a surface temperature that varies sinusoidally according to the 
equation: 

then the temperature at any depth and time is given by: 

where to is a phase shift that depends on whether t is local time, universal 
time or some other time reference. In Eq. (2.4) local time was used and 
to = 8. Recall from Ch. 2 that Tave is the average temperature over a 
temperature cycle, A(0) is the amplitude of the temperature fluctuations 
(half the difference between minimum and maximum) and w is the angular 
frequency, which is calculated from 

where z is the period of the temperature fluctuations. In Ch. 2 we were 
using time in hours, so t was in hours, but here we need t in seconds. 
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We are now interested in diurnal and annual fluctuations so 

2n 
wamUal = = 2 x ~ O - ~ S - ' .  

365 x 24 x 3600 s 

The symbol D represents the damping depth, and is calculated from: 

Referring to Eq. (8.6), it can be seen that D determines how much the 
amplitude of the temperature variation is attenuated with depth and how 
much the phase is shifted in time. When z = D the exponential in 
Eq. (8.6) has a value of 0.37, indicating that the amplitude of temperature 
fluctuations at that depth is 37 percent of the amplitude at the surface. At 
z = 2 0  the amplitude is exp(-2) = 0.14, and at z = 3 0  the amplitude 
is exp(-3) = 0.05. The damping depth therefore gives useful informa- 
tion about the depth to which temperature fluctuations penetrate into the 
soil. Even though the surface temperature is not sinusoidal, the damping 
depth still gives a good idea of how deep diurnal and annual temperature 
fluctuations will penetrate. 

The damping depth also affects the phase. At the depth where z/D = 
x ,  or z = x D, the temperature reaches a maximum when the surface 
temperature is at its minimum. To get an overall picture of temperature 
variation with depth and time Eq. (8.6) can be plotted in three dimensions. 
This is shown in Fig. 8.1. Note how the temperature fluctuations are 
attenuated with depth and are shifted in time. At the bottom of the graph, 
amplitude is only about five percent of the amplitude at the surface and the 
maximum occurs at about the same time as the minimum at the surface. 

To find the heat flux density at the soil surface differentiate Eq. (8.6), 
substitute from Eq. (6.3), and set z to zero. Doing this gives 

aA(0)k  sin[w(t - to) + n/4] 
G(0,t) = 

D 
(8.9) 

Equation (8.9) shows that the maximum heat flux density occurs 118 
cycle (n/4) before the maximum temperature (Eq. (8.6)). This flux can 
be integrated over a half-cycle to determine the total heat input to the soil. 
From the integration f iDpScs~(0)  is obtained, which is the same as the 
heat storage that would occur in a layer of soil of thickness f i D  which 
changed temperature by A(0). Therefore, f i D  can be thought of as an 
effective depth for thermal exchange with the soil. 

Yet another relationship can be obtained from Eq. (8.9), or from the 
expression for total heat input. Using Eq. (8.8) the following can be 
written: 
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Temperature (C) 

Depth (m) Time of Day 

FIGURE 8.1. Graph of Eq. (8.6) showing how the surface temperature wave is 
attenuated with depth and shifted in time. 

where p = =. This square root of the product of thermal conduc- 
tivity and volumetric heat capacity is called the thermal admittance, p. It 
can be seen that this relates directly to the ability of the soil to store heat, 
since both the rate of heat storage (Eq. (8.9)) and the total amount of heat 
stored in a half-cycle are proportional to the thermal admittance. Soils 
with a high thermal admittance store heat more readily than those with 
low admittance. When the admittance is high much of the heat available 
at the surface goes to heating the soil, while when it is low, most of the 
heat goes to the atmosphere. 

The thermal admittance can be used to help understand how radiant 
energy that is absorbed at a dry surface might be partitioned between the 
atmosphere (convection) and the soil (conduction). Since the soil surface 
is dry, it can be assumed that latent heat loss is near zero, so radiant energy 
is approximately equal to G + H. This is partitioned as: 

Some approximate values of GI  H are given in Table 8.1 for a dry bare 
soil and a dry mulch. 

This analysis is only qualitative because Eq. (8.10) assumes p is con- 
stant with height, and the equations derived in ch. 7 show that p increases 
with height. However, it can be seen that a higher atmospheric admit- 
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TABLE 8.1. Dependence of soil and sensible heat flux on 
atmospheric and soil factors for two dry surfaces. 

GIH 
Medium Bare, dry soil Loose straw mulch 
Still air 50 20 
Calm atmosphere 0.5 0.2 
Windy atmosphere 0.1 0.04 

tance (windy atmosphere) or a lower soil admittance (loose straw mulch) 
decreases the heat going to the soil. 

The thermal admittance can also be used to estimate the contact sur- 
face temperature at the interface between two solid objects, each initially 
at a different temperature, when they are brought into contact. If one ob- 
ject with an initial temperature Tl and thermal admittance p1 is brought 
into contact with another object with initial temperature T2 and thermal 
admittance ~ 2 ,  then the temperature at the interface, T,, is given by 

Clearly the object with the higher thermal admittance will dominate the 
interface temperature. This is why a tile floor "feels" colder than a carpet. 
The tile has a much higher admittance than the carpet. 

8.2 Thermal Properties of Soils: Volumetric 
Heat Capacity 

In order to compute damping depths, admittances, and soil temperature 
profiles, the thermal diffusivity of the soil needs to be known. This, in 
turn, requires a knowledge of the thermal conductivity and specific heat 
of the soil. In this section we tell how to find these quantities. 

The volumetric heat capacity of a soil is the sum of the heat capacities 
of the soil components. Soil typically is made up of minerals, water, and 
organic matter. The soil heat capacity is therefore computed from 

where 0 is water content (volume fraction of water), 4, and 4, are volume 
fractions of minerals and organic material, and c and p are the specific 
heat and density. While air is almost always present, its contribution to 
the soil heat capacity is negligible. Other constituents, like ice, are added 
to Eq. (8.12) when present. Table 8.2 lists thermal properties for a num- 
ber of soil constituents. Thermal properties with significant temperature 
dependence are indicated. 

Figure 8.2 shows the variation in heat capacity of four typical soils 
when the water content varies from zero to saturation. As indicated by 
Eq. (8.12), the change is linear, and values range from less than 0.5 to 
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TABLE 8.2. Thermal properties of typical soil materials. 

Material 

Soil minerals 
Granite 
Quartz 
Glass 
Organic matter 
Water 
Ice 
Air (101 kPa) 

Specific 
Heat 
(J g-I K-I) 
0.87 
0.82 
0.80 
0.84 
1.92 
4.18 
2.1 + 0.0073T 
1.01 

-- 

Thermal 
Conductivity 
(W m-I K-I) 
2.5 
3.0 
8.8 
0.8 
0.25 
0.56 + 0.0018T 
2.22 - 0.01 1 T 
0.024 + 0.00007T 

Volumetric 
heat capacity 
(MJ m-3 K-I) 
2.3 1 
2.16 
2.13 
2.28 
2.50 
4.18 
1.93 + .0067T 
(1.3 - 0.0041T) 

x 

about 3.5 MJ m-3 K-'. The slope of all lines is the same and is deter- 
mined by the heat capacity of water. The intercepts differ because of the 
differences in solid fractions in the different soils. 

Example 8.1. Find the volumetric heat capacity of loam soil with a 
water content of 0.2 m3 m-3 and a bulk density of 1.3 ~ g / m ~ .  Assume 
the organic fraction is zero. 

Solution. The mineral fraction is the ratio of the bulk density to the min- 
eral density. The mineral density of soil, from Table 8.2, is 2.65 ~ g / m ~ ,  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Volume Fraction of Water 

FIGURE 8.2. Volumetric heat capacity of organic and mineral soils. Differences 
are mainly due to differences in soil bulk density. 
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so 4, = 1.312.65 = 0.49. Using Eq. (8.12), 

Thermal Properties of Soils: Thermal 
Conductivity 

The thermal conductivity of soil depends on the conductivities andvolume 
fractions of the soil constituents. The heat flows through a complicated 
network of mineral, water, and air paths and the quantity and conductivity 
of each strongly influences the effectiveness of the others. In addition, a 
substantial quantity of heat is carried by evaporation and condensation 
in the soil pores, and this is both water content and temperature depen- 
dent. DeVries (1963) proposed that the thermal conductivity of soil be 
computed as a weighted sum of the conductivities of the constituents: 

where 4 is the volume fraction, 6 is a weighting factor, k is the thermal 
conductivity of the constituent, and subscripts w, g, and m indicate the 
water, gas, and mineral fractions. 

The apparent thermal conductivity of the gas phase is the sum of the 
thermal conductivity of air, given in Table 8.2, and an apparent conductiv- 
ity resulting from latent heat transport within the pores of the soil. Water 
evaporates on one side of the pore, diffuses across the pore in the air 
space, and then condenses on the other side of the pore. The latent heat 
of evaporation is carried with the water across the pore. After the water 
condenses, it can flow back to the hot side ofthe pore and evaporate again. 
Engineers have used this same idea in highly effective heat exchangers 
called heat pipes. The pipes are tubes with a volatile liquid and a wick 
sealed inside. The liquid evaporates on the hot end of the tube, diffuses 
to the cold end, condenses, and then moves back to the hot end through 
the wick. The heat pipe is sealed so there is always plenty of liquid, but 
the soil can dry out. As the soil water content decreases, the water films 
become thinner, and the return flow of liquid water in the soil pores is 
increasingly impeded until there is no contribution of latent heat to the 
overall heat transport in soil pores. 

Fick's law can be used to compute the latent heat flow in a pore. Using 
Eq. (6.5) gives: 

where 6 is the molar density of air, h is the latent heat of vaporization 
of water, D, is the vapor diffusivity for soil, and C,  is the vapor mole 
fraction given by the ratio of vapor pressure divided by total atmospheric 
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pressure ( e l p a ) .  The second equation is obtained by applying the chain 
rule of calculus. The derivative of water concentration with respect to 
temperature can be expanded using the relationship C ,  = h, C, ( T )  from 
Ch. 3 where h, is the relative humidity in the soil. Since h, is not temper- 
ature dependent, it can be taken out of the derivative. Now, using another 
definition from Ch. 3: s = d C , ( T ) / d T ,  gives the slope of the saturation 
mole fraction function for water; which is simply related to the slope of 
the saturation vapor pressure versus temperature. Substituting these into 
Eq. (8.14) gives 

The apparent thermal conductivity for distillation across a pore is made 
of all the terms which multiply the temperature gradient. 

Equation (8.15) is adequate for moist soils at low temperature, but 
requires two corrections for it to work at high temperatures or for dry 
soils. When water evaporates from a surface, mass in the vapor phase is 
created at the liquid-gas interface which causes the entire gas phase to 
flow away from the surface. At low temperature this mass flow effect is 
negligible, but at boiling point its effect is far greater than the diffusive 
flux from Fick's law. The correction to the equation is called the Stefan 
correction. It can be inserted into Eq. (8.15) by substituting A / ( p a  - ea) 
for s where A is the slope of the saturation vapor pressure function. From 
Ch. 3, s = A / p a .  At typical environmental temperatures pa >> ea this 
substitution will have very little effect. If a moist soil is heated by a fire at 
the surface, however, the Stefan correction becomes very large, and the 
soil becomes an excellent conductor of heat because pa - ea becomes 
small: 

The second correction was mentioned previously relating to the return 
flow of water. Even before the humidity in the soil drops significantly 
below one (remember from Ch. 4 that the humidity in moist soil is always 
close to one) the return flow of liquid water in the soil pores has dropped 
sufficiently to render the latent heat component of the pore conductivity 
negligible. No fundamental theory has been developed yet to account 
for this. Campbell et al. (1994) give a dimensionless flow factor which 
depends on the soil water content. This factor multiplies Eq. (8.16) to 
give the actual latent heat flux. The factor is 

The constant 8, determines the water content where return flow cuts 
off and q determines how quickly the cutoff occurs. Both constants are 
correlated with soil texture and tend to increase as textures become finer. 
The range for 8, is from around 0.05 for coarse sand to 0.25 for heavy 
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clay. The range for q is roughly 2 to 6 with coarser materials generally 
having lower values, but the pattern is not as clear as for the cutoff water 
content. 

The complete expression for vapor phase apparent conductivity is 

where k, is the thermal conductivity of air.The weighting factors are deter- 
mined by the shapes, conductivities, and volume fractions of the soil con- 
stituents. Campbell et al. (1994) defined a fluid conductivity for the soil as 

In dry soil the fluid conductivity is the value for dry air and in saturated 
soil it is the value for water. The same f, function used for the liquid 
return flow is used in Eq. (8.19). Using Eq. (8.19) the weighting functions 
can now be computed: 

1 

In these equations, kg is from Eq. (8.18), while k, and k, are from Table 
8.2. The shape factors, ga and g,, depend on the shape of the soil particles. 
One can compute g, from g, = 1 - 2ga. For mineral soils ga has a value 
around 0.1. For organic soils it is 0.33. 

These equations are most useful as part of a computer program as 
they are quite long for hand calculations. They do, however, include all 
of the effects of temperature, moisture, density, and soil composition. 
The interaction among these factors is complex and sigmficant, and, at 
present, no simpler approach is apparent. Figure 8.3 shows thermal con- 
ductivity computed using Eq. (8.13) for the soils in Fig. 8.2. The mineral 
conductivities of the clay and loam samples are 2.3 and 2 W m-' C-' . 
The organic k,,, is 0.3 and the sand k, is 5 W m-I C-' . The sand curve is 
meant to represent a sample with high quartz content. 

Example 8.2. For the soil in Example 8.1, find the thermal conductivity. 
Assume T = 20" C, pa = 101 kPa, k, = 2.5 W m-I C-' , q = 4, and 
6, = 0.15. 

Solution. To do the calculation, values are needed for A, A, h,, D,, and 
e.  From Table A.2, h = 44100 J/mol. From Table A.3, A = 145 PaIC 
and e = 2340 Pa. From Table A. 1, D, = 2.42 x m2/s. From Table 
8.2, ka = 0.025 W m-I C-I and k, = 0.60 w m-' C-' . There is no easy 
way of calculating h,, but a loam soil at 0.2 water content is well above 
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FIGURE 8.3. Thermal conductivity of mineral and organic soils from Eq. (8.1 1). 
Temperature is 20" C. 

permanent wilting point, so the humidity must be nearly 1 .O. The volume 
fraction of minerals is 0.49, from example 1, and the water fraction is 0.2. 
The gas fraction is & = 1 - 6' - 4, = 1 - 0.2 - 0.49 = 0.31. 

From Eq. (8.17), the dimensionless flow factor is 

The thermal conductivity of the gas phase is (Eq. (8.18)): 

Note that the contribution from latent heat transport is about twice that 
for conduction through the dry air. Using Eq. (8.19) the fluid conductivity 
can be computed. It is 
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Now the weighting factors can be computed using Eq. (8.20): 

where we have assumed g, = 0.1. Equation (8.13) is now used to find 
the thermal conductivity: 

Even though the air has a very low thermal conductivity, it profoundly 
influences the conductivity of the soil when the gas fraction is high. Most 
of the heat has to flow through the air spaces, so they exert a controlling 
influence on overall heat flow. The model accounts for this through the 
fact that the weighting factor for the gas phase is larger than the other two 
factors. 

The slope of the saturation vapor pressure function is strongly temper- 
ature dependent, so the apparent thermal conductivity of the gas phase 
increases rapidly with temperature. In the example just described, the gas 
phase conductivity is only a little over 10 percent of the water conduc- 
tivity, but as temperature increases they become more similar. At about 
60" C, the gas and water phase conductivities are equal, so for moist soil 
( fw x I), the conductivity becomes independent of water content. 

8.4 Thermal Diffusivity and Admittance of 
Soils 

Equation (8.4) defines the thermal difisivity as the ratio of conductivity 
to volumetric heat capacity. Figuri 8.4 shows the difisivity for the soils in 
Figs. 8.2 and 8.3. The difisivity of the organic soil is almost constant with 
water content, while the mineral soils have a relatively rapid transition 
from dry to wet difisivity. The sand difisivity is so much higher than 
the others mainly because we assumed a high quartz content for it. A sand 
with mineral conductivity equal to that for the loam and clay would have 
difisivities near the loam line. We also assumed a higher bulk density 
for the sand, which also increased its difisivity. A low-quartz soil with 
average bulk density would have a dry difisivity around 0.2 mm2/s and 
a wet difisivity around 0.4 mm2/s. 
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FIGURE 8.4. Thermal difisivities of soils from Figs. 8.2 and 8.3. 

Example 8.3. Compare the diurnal damping depths for moist organic 
soil with dry and wet loam soil. 

Solution. From Fig. 8.4 the difisivities appear to be around 0.14, 0.2, 
and 0.4 mm2/s for the organic, dry loam, and wet loam respectively. Using 
Eq. (8.81, 

J 2 x 0.2 x 10-6 $ 
Ddry loam = = 0.074 m = 7.4 cm 

7.3 x 10-5 S-1 

D w e t  loam = = 0.105 m = 10.5 cm. 
7.3 x 10-5 S-I 

If the same diurnal temperature variation were applied to the surface of 
each profile, it would penetrate about twice as deep into the wet mineral 
soil as it would the organic soil. 

Example 8.4. At what depth would soil temperature be measured if you 
wanted to find the mean annual temperature to within lo  C? 

Solution. From Ch. 2 we know that the range of annual temperature 
variation is 20 to 30" C, so A(0) is 10 to 15' C. We want the variation to 
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be less than lo C, so, using Eq. (8.6) 

We assume that the soil is moist for most of the year. The annual damping 
depth is therefore 

Solving for z gives 

The same type of calculation could be used to find the average temperature 
over a diurnal cycle. It would also be roughly three times the damping 
depth, or about 30 cm. 

As previously discussed, the thermal admittance, or ability of the soil 
to store heat when temperature varies over a specified range, is the square 
root of the product of thermal conductivity and volumetric heat capacity. 
The information in Figs. 8.2 and 8.3 can be combined to give thermal 
admittance values. These are shown in Fig. 8.5. Water content affects the 
admittance of all of the soils dramatically over the whole range of water 
contents. Wet soil admittances are four to five times those of dry soils. 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Volume Fraction of Soil Water 

FIGURE 8.5. Thermal admittance of soils in Figs. 8.2 and 8.3. 
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Mineral soil admittances are also three to five times greater than those 
for organic soils. 

8.5 Heat Transfer from Animals to a Substrate 

Equation (8.3) can be solved with a different set of initial and boundary 
conditions to obtain another result of interest to environmental biophysi- 
cists. The practical problem is that of estimating conduction heat loss or 
heat gain when an animal with body temperature Tb comes in contact with 
soil or another substrate with initial temperature To. The mathematical 
problem which approximates this is to find temperature as a function of 
depth and time for a semi-infinite medium of difisivity K ,  and initial 
temperature To when the surface is instantaneously raised to a tempera- 
ture Tb at time zero. The solution can be found in standard texts on heat 
transfer. It is: 

where erf is the error function, a function which is tabulated in standard 
mathematical tables. To find the heat flow through the surface of the 
soil, differentiate Eq. (8.21) with respect to depth to get the temperature 
gradient, multiply the gradient by the thermal conductivity, and set depth 
to zero. The result is: 

The numerator of the term multiplying the temperature difference is the 
thermal admittance of the soil and the denominator is the square root 
of n multiplied by the length of time since the surface temperature was 
changed. As time increases the rate of heat flow into the soil decreases. 

To make Eq. (8.22) into a form that can be used with the conductances 
from the past two chapters the average heat input to the soil could be 
found over the total time of animal contact with the soil and then cal- 
culate and average conductance for that time period. The average heat 
input is obtained by integrating Eq. (8.22) over time and dividing by the 
time. The result is that the average heat flux density is exactly twice the 
instantaneous heat flux at time t given by Eq. (8.22). Now, using Eq. (6.8) 
as a definition of conductance, an equivalent soil conductance can be 
obtained: 

where c, is the molar specific heat of air. The conductance is directly 
proportional to the soil admittance and inversely related to the square 
root of time. Values are plotted in Fig. 8.6 for mineral and organic soils. 
The admittance for concrete is about the same as for wet soil, and the 
admittance of straw or leaves is similar to that of the organic soil, so 
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FIGURE 8.6. Thermal conductance of three soil materials averaged for the times 
shown. 

Fig. 8.6 can be used to estimate heat loss or gain for most substrates. 
The average heat loss decreases by a factor of about five in going from 
contact periods of a few minutes to contact periods of a day. There is 
also roughly a factor of five difference between wet soil and dry soil of 
dry soil and organic material. These numbers should not be completely 
foreign to your experience. Just compare how you feel about sitting on 
a concrete bench when the temperature is -20" C to how you feel about 
sitting on a bale of straw. 

Before leaving this subject we need to indicate some cautions and 
limitations. First, Eqs. (8.21) through (8.23) are for one-dimensional heat 
flow. For a large animal lying on a substrate for a relatively short time a 
one-dimensional analysis is probably adequate, but the smaller the animal 
and the longer the time, the worse the one-dimensional analysis fits the 
problem. A second point to mention is that the soil conductance is in 
series with the coat and tissue conductances of the animal. The boundary 
conditions we used to solve the differential equation are therefore not 
strictly correct. They should, however, provide a good approximation. 
The third point is that energy budgets, and therefore conductances, are 
generally for the whole animal, while these calculations are just for the 
part of the animal in contact with the solid substrate. The conductance for 
the whole animal is obtained by multiplying the conductance in Eq. (8.23) 
by the ratio of area in contact with the substrate to total surface area of 
the animal. 
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Problems 

8.1. A common saying among farmers is "a wet soil is a cold soil." Is 
this true? At what water content would you expect a mineral soil to 
warm fastest (or have the largest damping depth)? What factors other 
than damping depth and thermal admittance might affect the rate of 
warming of a soil in the spring? 

8.2. Compute the thermal conductivity of a dry sandy soil at 20" C with 
a bulk density of 1.5 ~ g / m ~  (quartz content equals zero). 

8.3. Rattlesnakes often seek out rocky locations for their dens where 
they can retreat several meters underground in winter. If the daily 
near-surface temperature of the rocks is 30" C in summer and -5" C 
in winter, what is the lowest temperature the snakes would experi- 
ence during the year if they choose their depth to maximize their 
temperature? 

8.4. Compare the conductive heat losses for a deer on frozen, saturated soil 
(at 0" C) and a deer on a thick bed of leaves at the same temperature. 
Assume a body temperature of 37" C, and that 30 percent of the deer's 
surface is in contact with the substrate for a period of eight hours. 
Would the conductive losses be about the same, less, or more if the 
deer were on a frozen, dry soil? 

8.5. If the temperature of your bare foot is 35" C and the temperature of 
the floor is 20" C, calculate the interface temperature between your 
foot and the floor for a tile floor that has a thermal admittance three 
times that of your foot, and for a carpet floor that has a thermal 
admittance 113 that of your foot. 



The h a 1  transport equation that we need to consider is Darcy's law 
(Eq. (6.4)). This law describes the transport of water in porous materials 
such as soils. Darcy's law describes most of the water flow that takes place 
in soils. Since water plays such an important role in the energy balance 
of soils, plants, and animals, an understanding of at least some simple 
applications of Darcy's law is important to environmental biophysicists. 
The processes that are important in determining the water budget of a soil 
are infiltration of applied water, redistribution of water in the soil profile, 
evaporation of water from the soil surface, and transpiration of water by 
plants. 

We are mainly interested in applying Darcy's law to problems of 
one-dimensional water flow, with flow occurring vertically upward or 
downward. The components of the water potential (Ch. 4) responsible 
for flow are the matric and gravitational potentials. We can therefore 
substitute the matric and gravitational potentials for y in Eq. (6.4) to 
obtain: 

Two aspects of this equation make it more complicated mathematically 
than the equations for diffusion and heat conduction. One is that the hy- 
draulic conductivity has a strong dependence on the dependent variable 
(matric potential). The other is the flow caused by the gravitational po- 
tential gradient. We do not try a frontal attack on Eq. (9. l), but do look 
for some simple cases for which we can get approximate solutions. 

The Hydraulic Conductivity 

The most important factor determining the behavior of Eq. (9.1) is the 
hydraulic conductivity function. When the soil is saturated with water (all 
pores filled) the hydraulic conductivity has a value called the saturated 
conductivity. As the pores drain, the conductivity falls rapidly. With half 
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the pore space drained (roughly field capacity) the conductivity has de- 
creased, typically, by a factor of a thousand. When three-fourths of the 
pore space has drained (roughly permanent wilting point) the conductivity 
is only one-millionth of its value at saturation. 

A simple equation that gives a good approximation of the hydraulic 
conductivity is (Campbell, 1985): 

where ly, is called the air entry water potential and K, is the saturated 
conductivity of the soil. The parameter b is the exponent of the mois- 
ture release equation, similar to Eq. (4.4): 

where 8 is the volumetric water content, and 8, is the saturation water 
content. The values of b, K,, and ye depend on soil physical character- 
istics such as texture. 

Saturated conductivity is large for coarse textured soils and small for 
h e  textured, while the inverse is true for ye. Since ye and K, both depend 
on the size of the largest pores in the soil, they are not independent, and, 
in fact are related by the equation: K,y," = C, a constant.Table 9.1 gives 
values of K,, ye, b and other hydraulic properties for a range of soil 
texture. This table, with Eqs. (9.2) and (9.3), allows one to estimate the 

TABLE 9.1. Hydraulic properties of soils as a function of soil texture 
(recomputed from Rawls et al. 1992). 

Texture 

sand 
loamy sand 
sandy loam 
loam 
silt loam 
sandy clay loam 
clay loam 
silty clay loam 
sandy clay 
silty clay 
clay 

Siit Clay -ye b 
Jflrg 
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hydraulic conductivity and matric potential for various soils at any water 
content. 

9.2 Infiltration of Water into Soil 

If water were to pond on a soil surface and the rate at which it infiltrated 
the soil was measured, results similar to those shown in Fig. 9.1 would 
be obtained. Results of three experiments are shown, two with vertical 
infiltration and one with horizontal. Of the two vertical experiments, one 
was with wet soil and the other dry. For the horizontal column the gravita- 
tional gradient is zero, so the matric potential gradient is the only driving 
force for water flow. The results of the experiments are in agreement with 
the predictions that would be made using Eq. (9.1). Initial infiltration is 
dominated by matric forces, so vertical and horizontal infiltration occur at 
similar rates. The matric potential gradient is smaller for the wet soil than 
for the dry, so infiltration rate at early times is greater for dry soil than for 
wet. The water potential gradient for the dry soil is 10000 times greater 
than that for the wet, yet there is hardly a difference in the infiltration 
rates. This is because the hydraulic conductivity for the dry soil is much 
smaller than for the wet. 

The influence of matric potential gradients decreases with time, and 
eventually the gravitational gradient becomes the dominant driving force 
for flow. Equation (9.1) indicates that the gravitationally-induced flow 

0 20 40 60 80 100 120 
Time (min) 

FIGURE 9.1. Vertical infiltration rate for water into initially dry and wet soil, and 
horizontal infiltration into dry soil. 
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for a saturated soil is gK,. The saturated conductivity for the soil in 
Fig. 9.1 was set at 0.001 kg s md3, so the final infiltration rate should 
be 0.0098 kg m-2 s-' (0.0098 mm s-I). It can be seen that both curves 
are approaching this value. The final infiltration rate for the horizontal 
column is zero. 

The important result of the foregoing analysis is that the final infiltra- 
tion rate can be predicted if the saturated conductivity of soil is known. 
A simple analysis by Green and Ampt (191 1) can be used to estimate 
the matric-dominated infiltration rate. If we were to measure the water 
content in the soil as the infiltration shown in Fig. 9.1 occurred, we would 
obtain the result shown in Fig. 9.2. At each time the soil column consists 
of essentially wet soil overlying dry soil. A sharp wetting front separates 
the wet and dry soil. You can see that sharp boundary between the wet 
and dry soil when you watch water infiltrate dry soil. 

The Green-Ampt calculation is made by specifying the location of 
the wetting front at a point z f ,  ignoring the gravitational influence, and 
approximating the derivative as 

where K,,, is the average hydraulic conductivity of the wet soil (called 
the transmission zone) and ymf and ymi are the water potentials at the 
wetting front and the infiltration boundary. 

The rate of water storage in the soil is equal to the average change in 
water content of the transmission zone multiplied by the rate of advance 

0.0 0.1 0.2 0.3 0.4 0.5 

Water Content (m3Irn3) 

FIGURE 9.2. Water content profiles in soil during infiltration. 
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of the wetting front. For mass balance, the rate of infiltration must equal 
the rate of storage so: 

where p, is the density of water, and A0 = (Oi + 0 ) / 2  - 0,; 0 is the vol- 
ume fraction of water, and the subscripts i , f , and o are for the infiltration 
boundary, the wetting front, and the initial water content, respectively. To 
obtain the position of the wetting front as a function of time separate the 
variables and integrate: 

All but t can be expected to be relatively constant during infiltration, so 
the wetting front will advance linearly with square root of time. 

Equation (9.6) can be substutued into Eq. (9.4) to obtain the infiltration 
rate: 

showing that the infiltration rate is linearly related to the reciprocal of 
the square root of time. If the data in Fig. 9.1 were replotted with the 
reciprocal of square root of time as the horizontal axis, the data for the 
horizontal soil would plot as a straight line. In Ch. 8 we showed that 
the rate of heat flow into a one-dimensional slab also goes as the inverse 
square root of time (Eq. (8.22)). It is interesting that the time dependence 
is the same for heat and water flow, even though the Darcy equation for 
water is highly nonlinear. 

The Green-Ampt approach is strictly only for horizontal infiltration. 
However, vertical infiltration can be approximated by adding a gravity 
term to Eq. (9.7). This canthen be integrated over time to give an equation 
for cumulative infiltration: 

Zw = J ~ P w A ~  Kave(@mi - Ilr,f)t + gKavet- (9.8) 

The most challenging aspect of using Eq. (9.8) is estimating ymf, the 
matric potential at the wetting front. If we assume that the wetting 
front is symmetric, then the following approximate expression holds: 

where b and @e can be estimated from Table 9.1. 

9.3 Redistribution of Water in Soil 

When infiltration ceases, water continues to move down into the soil under 
the influence of matric and gravitational forces. Infiltration was stopped 
with the final profile shown in Fig. 9.2. The redistribution profiles at four 
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FIGURE 9.3. Redistribution of water in soil following infiltration. 

times following are plotted in Fig. 9.3. The water content of the wetted 
zone decreases rapidly at first, but the rate of decrease becomes smaller 
with time, and eventually there is little change in water content, even 
over fairly long times. As the water content of the soil decreases, the 
hydraulic conductivity decreases, so the rate of movement of water from 
upper to lower layers decreases. This decrease in hydraulic conductivity 
with drying allows the soil to store water and gives rise to field capacity. 

Darcy's law and some of the characteristics of the redistribution pro- 
cess can be used to get a better understanding of field capacity. Note that 
the water content in the wetted part of the profile in Fig. 9.3 is almost 
constant with depth, implying that the matric potential is also almost 
constant. To do a simple (but rough) analysis of redistribution, the matric 
induced flow can be neglected. Then just the gravitational part is left. 
Since neither g nor K are ever zero (except when the soil is completely 
dry), there will always be some flow out of the wetted zone. We choose 
a value E for the flow out of the wetted portion of the profile, such that 
the flow can be considered negligible when compared to water inputs or 
other water losses. Using Eqs. (9.1) and (9.2), 

where n = 2 + 3lb and is the field capacity water potential corre- 
sponding to a drainage rate of E in units of kgm%-'. Substituting the 
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constant C for the product K,@ and solving for &f gives: 

One way to obtain a value for E is to set it equal to, say, ten percent of 
evapotranspiration (ET). If ET is 7 mrnlday, then E would be 0.7 &day 
or 8.1 x kg m-2 s-'. Campbell (1985) gives C = Putting 
these values into Eq. (9.11) and assuming n = 2.5 gives a field capacity 
water potential of - 17 Jkg. Field capacity determined more empirically 
is between - 10 and -33 Jkg. If E had been set to one percent of ET, then 
Eq. (9.1 1) would give -43 Jkg for ' I F f c .  

Example 9.1. Use the parameters in Table 9.1 for a silt loam soil to 
estimate the water content at - 10 and -33 Jkg matric potential. Assume 
6, ,= 0.5 m3/m3. 

Solution. Solve Eq. (9.2) for 6: 

Using this equation, the water contents are 

-2.1 Jkg 1'4.7 m3 

9-33 = 0.5 ( -33 Jikg ) = 0.278- and 
m3 

The water content at -33 Jkg that is listed in Table 9.1 is 0.33 m3/m3. 
The difference between that value and the one computed here comes 
fiom the way the values in Table 9.1 were obtained. The values in the 
table are averages of many samples for that texture class. Because of the 
nonlinear nature of Eq. (9.2), the water content from a calculation done 
using averages of the parameters normally would not be equal to the 
average of the measured water contents. Another source of uncertainty is 
the value of 6, for the soils in Table 9.1. 

A number of factors influence field capacity in addition to the ones 
brought out in this simple analysis. It is actually the hydraulic conductiv- 
ity function of the soil profile that determines redistribution rates, not the 
conductivity of a particular location in the profile. If there is sigmficant 
layering (which there usually is), field capacity will increase. In addition, 
some texture and density effects appear to cancel in the simple analysis, 
but may influence field capacity of real profiles. Finally, the matric po- 
tential gradient is almost never negligible compared to the gravitational 
gradient, so there are always matric effects on field capacity. In spite 
of these limitations, however, several key points are apparent from the 
analysis. First, we see that field capacity is determined by the ability of 
the soil to transmit water. Some people suppose that the soil holds water 
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because of the attraction of the matrix for the water. We were able to de- 
termine a matric potential at which drainage was considered negligible, 
but this came from the dependence of conductivity on matric potential, 
not from the attraction of the matrix for the water. The second point is that 
a sealed, semi-infinite soil column will continue to drain until it reaches 
zero water content. There is no point at which drainage ceases. We can 
therefore think of the soil as a leaky bucket. The size of the leak, however, 
decreases as the bucket empties. 

Some of this is illustrated in Fig. 9.4. The figure shows the water 
content at a 5 cm depth for the soil in Fig. 9.3. Initially the water content 
decreases rapidly, but after two to three days the rate of decrease slows. 
~ ~ e r a t i o n a l i ~ ,  fikld capacity is defined as the water content ofthe initially 
wetted soil two to three days after a heavy rain or irrigation when there 
is no evaporation or transpiration. If Fig. 9.3 were extended to weeks, 
months, years, or even hundreds of years, water content would continue 
to decrease. Figure 9.5 extends the graph to about 3 years, and shows that 
a log-log plot of water content versus time is a straight line. 

9.4 Evaporation from the Soil Surface 

Water is lost from the root zone of the soil profile in three ways. It can 
percolate below the root zone, it can evaporate from the soil surface, and it 
can be taken up by plants. The redistribution calculations just discussed 
can be used to find the percolation. Evaporation and transpiration still 
need to be discussed. 

0 1 2 3 4 5 

Time (days) 

FIGURE 9.4. Water content vs. time at the 5 cm depth in Fig. 9.3. 
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FIGURE 9.5. Redistribution of soil water. Data from Fig. 9.4 plotted on a log-log 
scale and extended in time. 

Figure 9.6 shows the course of evaporation rate over time for three soil 
drying experiments. Two stages of drylug can be identified, a steady 
constant rate stage and a falling rate stage. The transition between the two 
occurs when the soil surface becomes dry. The evaporation rate during the 
first stage is determined by the evaporative demand of the atmosphere. If 
the demand is high, this stage is short. The lower the evaporative demand, 
the longer this stage lasts. Coarse textured soils which store little water 
near the surface have short first stage drying periods. The sand in Fig. 9.6 
stores so little water that first stage drying is almost absent. 

At the onset of second stage drying, the soil limits the rate of supply 
to the soil surface. The rate of drying could be determined by calculating 
the vapor conductance of the dry layer and the vapor pressure difference 
across it, but the rate is really determined by the ability of the soil to 
conduct water to the evaporating surface. The form of the solution is 
similar, again, to the heat flow equation. From the onset of second stage 
drying the evaporation rate decreases linearly with the inverse of the 
square root of time, so the cumulative soil surface evaporation during 
second stage drying (the integral of the rate over time) is proportional to 
the square root of time: 

where tl is the time (days) that the first stage drying ends, and C is a 
constant that depends on soil type. Table 9.2 contains rough estimates of 
C for several soil textures and also includes approximate values of total 
cumulative soil surface evaporation for both first and second stage drying. 
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FIGURE 9.6. Evaporation rate for loam at high and low evaporative demand and 
for sand at high evaporative demand. 

Figure 9.7 shows cumulative evaporation versus time for the soils in 
Fig. 9.6. Interestingly, evaporative demand seems to have little effect on 
total water evaporated. Early on the high demand soil gets ahead, but the 
low demand soil stays in first stage evaporation longer and eventually 
almost catches up. The sand loses much less water than the loam. This is 
because the surface dries quickly and the coarse material has such a low 
hydraulic conductivity that it is not able to conduct water to the surface. 
The ultimate in water conservation is attained with a fine gravel surface, 
which has almost no storage and very low unsaturated conductivity, but 
transmits rain downward very readily. The pebble pavement sometimes 
seen in deserts, where the fine material has been blown away by the wind 

TABLE 9.2. Approximate characteristics of soil surface 
evaporation for several soil textures. 

Soil Texture Cumulative stage 1 C Cumulative total 
evaporation evaporation 

mm mm d-'I2 mm 

Clay loam 12 5.1 30 
Loam 9 4 25 
Clay 6 3.5 20 
Sand 3 3 10 
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FIGURE 9.7. Cumulative evaporation for the soils in Fig. 9.6. 

leaving only coarse material, is a good natural example of a high efficiency 
storage system. 

9.5 Transpiration and Plant Water Uptake 

Liquid water moves from soil to and through roots, through the xylem of 
plants, to the leaves, and eventually evaporates in the substomatal cavities 
of the leaf. The driving force for this flow is a water potential gradient. 
In order for water to flow, the leaf water potential must be below that of 
the soil. The entire system is sometimes thought of as being similar to a 
resistor network in an electronic circuit where water and current flow are 
analogous, and where the potential differences are like voltage differences 
in the circuit. Ohm's law is then used to describe the flow of water in the 
soil-plant system. The main resistances for liquid water are in the root 
and in the leaf, so we can calculate the rate of uptake of water from the 
soil as: 

where +s is the soil water potential, +L is the leaf water potential, and 
RR, RL, and Rp are the root, leaf, and total plant resistances. The uptake 
in Eq. (9.13) should be thought of as uptake per unit area of soil, not per 
plant. Campbell (1985) has shown that any distribution of roots and soil 
water potential can be represented by a single equivalent potential, which 
is the Ilr, inEq. (9.13). Forplants growing intypical field situations, almost 
all of the resistance for uptake of water is in the root (the soil resistance 
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is negligible). For this condition, the equivalent soil water potential can 
be calculated from 

h = 1 F.(z)h(z)dz (9.14) 

where F, (z) is a depth weighting function for root density and @(z) is 
the distribution of soil water potential with depth. 

In Ch. 5 we discussed the fact that the relative humidity inside the 
stomata of leaves is nearly 1.0. In even severely stressed leaves, it does 
not drop below 0.98. The humidity of the outside air is usually below 
0.5 during daytime. Therefore, the plant can have no sigmficant direct 
effect on its water loss by dropping its leaf water potential. The con- 
trol of water loss is indirect, through effects of leaf water potential on 
the stomatal diffusive conductance for vapor. At high leaf water poten- 
tial stomatal conductance is determined by light, temperature, and COz 
concentration. As leaf water potential decreases below some threshold, 
conductance begins to drop rapidly. A simple mathematical function with 
these characteristics is: 

where E p  and E,,, are the plant transpiration and maximum possible 
transpiration, and @cr sets the threshold leaf water potential for stomatal 
closure. The power 10 was chosen somewhat arbitrarily. It determines 
how rapidly the simulated stomata close. 

Going back to Eq. (9.13), it can be seen that it describes a linear 
relationship between uptake rate and leaf water potential (for a given 
soil water potential). Leaf water potential could decrease indefinitely, 
and uptake increase indefinitely except for the limit placed on leaf water 
potential by Eq. (9.15). We are interested in finding what that limit is 
for any given soil water potential. To do that, we convert Eqs. (9.13) and 
(9.15) to a dimensionless form. When 1Cr, = 0 and U = Epm the leaf 
water potential will have a value, @Lm. Using these values, Eq. (9.13) can 
be solved for Rp: 

@ ~ m  R p =  -. (9.16) 
Epmax 

Substituting Eq. (9.16) into (9.13), and defining U* = U/EpmX as a 
dimensionless uptake rate, @*, = @ L / @ L ,  as a dimensionless leaf water 
potential, and @: = @ s / @ ~ m  as a dimensionless soil water potential 
gives 

Equation (9.17) is plotted in Fig. 9.8 for two values of the dimensionless 
soil water potential (straight lines with positive slope intersecting the 
horizontal axis at @*, = = 0 and @*, = @; = 0.5 where U* = 0). 
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FIGURE 9.8. Dimensionless water uptake and loss. 

Equation (9.15) is already in a dimensionless form. The dimensionless 
transpiration rate can be defined as E* = Ep/Ep,,. The ratio of the 
potentials is the same as the ratio ofthe dimensionless potentials. Equation 
(9.15) is also plotted in Fig. 9.8 and it can be seen that the declining part 
of Eq. (9.15) is closely approximated by a straight line. The equation of 
the line is 

The maximum or potential uptake rate for a given soil water potential is 
at the intersection of the uptake and loss lines. Solving Eqs. (9.17) and 
(9.18) simultaneously to find that point, U*,, gives 

The actual rate of uptake cannot be higher than this value, but it can be 
lower if the evaporative demand of the atmosphere is lower. The actual 
transpiration rate of the plant canopy is therefore equal to the minimum 
of the evaporative demand of the atmosphere and Epm U*, . 

These ideas can be related to the depletion of the sod moisture by 
defining yet another dimensionless quantity, the available water fraction. 
The available water fraction can be defined as 

where 0 is average water content of the root zone and the subscripts 
indicate field capacity and permanent wilting water contents. For the 
simplest case, where it is assumed that water content of the root zone is 
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uniform, substitute from Eq. (9.3) to convert Eq. (9.20) to water potential. 
Dividing through by +Lm to convert to dimensionless soil waterpotentials, 
and canceling common terms, gives: 

Equation (9.21) can be solved for dimensionless soil water potential and 
combined with Eq. (9.19) to find a relationship between the maximum 
possible uptake rate and available water in the root zone. Obtaining values 
for @;, and @*,,, requires the estimation of a scaling potential @L,. If 
@Lm = - 1000 J kg-', then 1.5 can be substituted for the dimensionless 
permanent wilt water potential (from Fig. 9.8; +,,, = -1500 J kg-') 
use 0.02 for the dimensionless field capacity, and assume b = 5 to convert 
to numerical values. The resulting equation is 

Equation (9.22) is shown plotted in Fig. 9.9. It shows that the poten- 
tial uptake rate is high until about half of the available water has been 
extracted. With increasing depletion of soil water the uptake rate falls 
rapidly. It is important to remember that Fig. 9.9 is not showing the ac- 
tual uptake rate, it is showing the maximum rate for any given soil water 
content. If the atmospheric demand is lower than this value, then the up- 
take will be controlled by the atmospheric demand. The maximum uptake 
rate when soil is wet is probably about equal to the maximum atmospheric 

0.0 0.2 0.4 0.6 0.8 1.0 
Available Water Fraction 

FIGURE 9.9. Maximum rate of plant water uptake as a function of soil available 
water fraction. 
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demand on hot days, since plants tend to develop resistances and water 
potentials which just meet environmental demands. 

Example 9.2. Using the same soil properites as in Example 9.1, estimate 
the available water in mm in a 1 m deep root zone if the permanent wilting 
water potential is - 1500 J kg-'. 

Solution. 

If we assume that field capacity is at -33 Jlkg, then, from Example 9.1, 
Of, = 0.28 m3 m-3. The available volumetric water content is 0.28 - 
0.12 = 0.16 m3 m-3. With a one meter deep root zone, the available 
water in mm is obtained as 0.16(1000 mm)=160 mm of water. If, on the 
average, a plant uses 5 &day, then a one meter root zone of this soil 
could potentially provide water for about 32 days. 

Example 9.3. If a shallow-rooted plant (rooting depth = 200 mm) is 
growing in the soil described in Example 9.2 and E,,,, = 5 mmlday 
every day, how long will it take before E, = 1 &day? 

Solution. The total available water in a 200 mm deep profile would be 
0.16 x 200 = 32 mm. The available water fraction on the first day is 
A ,  = 1 so E, = 5 mmlday. It can be assumed that E, is appropirate for 
an entire day so that on the second day the available water is 32 mm - 
5 mm = 27 mm. Thus A, = 27/32 = 0.84 and on the second day the 
plant uptake rate can be estimated from Eq. (9.22). 

Up = Epmx[l - (1 + 1 . 3 7 ~ , ) - ~  

= 5[1 - (1 + 1.37 x 0.84)-~.~] = 4.9mm/day. 

On day 3, A, = 22.1132 = 0.69 so that Up = 4.9 &day. This process 
can be continued until E, = 1 mdday. 

Available 
water 
mm mmlday 
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Therefore, 8 days will be required for the transpiration rate to be reduced 
from 5 to 1 mdday. Note how quickly the plant runs out of water at the 
end of 7 days. This is a consequence of the steepness of the curve in Fig. 
9.8. Obviously the plant will virtually stop transpiring on the ninth day. 

9.6 The Water Balance 

We have discussed infiltration, redistribution, evaporation, and transpira- 
tion as if they are isolated processes. Of course, they are not, and most go 
on simultaneously. At any particular time conservation of mass requires 
that the rate of change in water content in a depth of soil L equal the sum 
of the inputs and losses. This mass balance equation can be written as 

where the terms on the left represent the rate of storage and the terms on 
the right are for infiltration (Jwi), deep percolation below depth L (Jwd), 
evaporation from the soil surface (E,), and plant transpiration (E,). It 
is not difficult to solve Eq. (9.23) and obtain a record of water content 
changes in the soil over time, but the solution is only practical using 
numerical methods on a computer. The methods are covered in detail in 
Campbell (1985). The analyses presented here are intended to give insight 
into the processes and how they operate, but do not lead to a full solution 
of the water balance equation. 
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Problems 

9.1. For a sandy loam soil, estimate the -33 J kg-' and -1500 J kg-' 
water contents. Assume 8, = 0.45 m3 m-3. 

a. If the rooting depth is 100 cm, estimate the maximum available water 
to the plant. 

b. If 50 mrn of rain falls on this soil in one hour, estimate the runoff if 
the initial volumetric water content of the soil is 0.1 . Use Eq. (9.8) to 
estimate the total infiltration in an hour. Compute the water potential 
at the wetting front from Eq. (9.10), and assume that the average hy- 
draulic conductivity of the transmission zone is the geometric mean 
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of the saturated conductivity and the conductivity at the wetting front 
(the geometric mean of two numbers is the square root of the product 
of the numbers). Assume that the potential at the infiltration boundary 
is zero. 

c. If 100 mm of rain falls on this soil in two hours, estimate the runoff if 
the initial volumetric water content of the soil is 0.1 m3 m-3. 

d. What is the depth of wetting for each rainfall case above? 
e. Estimate the new average water content for the top 100 cm of soil after 

each of the above rainfalls. 

9.2. If E,,, is measured to be 5 mm d-' in the sandy loam soil of 
problem 9.1 immediately after a rain that wets the upper 0.1 m of a 
root zone to a uniform water content of 0.25 m3 mP3, how long will 
it take before the transpiration decreases to 2.5 mm d-I because of 
water depletion in the top 0.1 m root zone? Assume that no water is 
available below the depth of wetting from the rain. 
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The modes of energy transport discussed so far (conduction, convection, 
and latent heat) all are somewhat intuitive. Radiative energy transport, 
on the other hand, is not intuitive at all. Radiant energy is transferred 
by photons, discrete bundles of electromagnetic energy that travel at the 
speed of light (c = 3 x 101° m l s  in vacuum) and behave both as particles 
and waves. These photons are emitted or absorbed by matter as a result 
of quantum jumps in electronic energy levels in atoms, or changes in 
vibrational and rotational energy levels in molecules. The wavelength of 
the radiation is uniquely related to the photon energy in an equation due 
to Planck: 

where h is Planck's constant (6.63 x J S) and h is the wavelength of 
the photon. Thus green photons, having a wavelength of 0.55pm would 
have an energy 

The energy transferred by a single photon is not generally of interest, 
but often the energy content of a mole of photons is. This is obtained by 
multiplying the energy per photon by Avagadro's number (6.023 x 1 0 ~ ~ ) .  
The energy content of photons at 0.55pm wavelength is 

23 photons J J 
6.023 x 10 --- x 3.6 x lo-'' - = 2.17 x lo5 - . 

mol photon mol 

This kind of calculation allows conversions between amounts of radiant 
energy and numbers or moles of photons for a particular wavelength. 

The energy of photons could also be expressed as a function of fre- 
quency v of the radiation, since vh = c, to give e = h v. Frequency, rather 
than wavelength is used in some treatments of environmental radiation 
(Gates, 1980). Advantages of using frequency are a more symmetrical 
presentation of absorption bands and the ability to show both solar and 
thermal radiation on a single graph. These advantages are offset some- 
what by the loss of detail in the longwave portion of the spectrum and the 
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unfamiliar nature of the units to many biologists. In this presentation we 
continue to use wavelength. 

10.1 The Electromagnetic Spectrum 

Photons in natural environments have a wide range of energies and wave- 
lengths. The whole range ofphoton energies is called the electromagnetic 
spectrum and is, somewhat arbitrarily, divided into segments or bands ac- 
cording to either the source of the photons or their interaction with living 
thmgs. Part of the electromagnetic spectrum is shown in Fig. 10.1. The 
top bar is a logarithmic scale and shows a little more than the full range 
of wavelengths which are important in radiant energy transport in the 
natural environment. The upper part of the top bar shows the two impor- 
tant sources of radiation (solar and thermal) and the lower part names 
three important bands (ultraviolet, visible, and near-infrared). Photons 
with wavelengths shorter than the ultraviolet end of the spectrum shown 
are called x-rays and gamma rays. Photons with longer wavelengths are 
called microwaves and radio waves. The second bar shows two bands 
of the ultraviolet and the wave bands of the visible colors. The h a 1  
bar shows some of the biological responses to the different parts of the 
electromagnetic spectrum. 

The previous calculation relating photon numbers and energy content 
of photons can be extended to cover whole wavebands. If the spectrum 
of a source is reasonably continuous over a given waveband, the photon 
flux in that wave band can be calculated from the average energy over 
the wave band divided by the photon energy at the median wavelength. 
For example, photosynthetically active radiation (PAR) is the radiation 
between 400 and 700 nm (Fig. 10.1). For solar radiation at sea level 

0.29 4.0 100 
1 solar radiation I terrestrial thermal radiation I 

I ultraviolet I visible I , , infrared, I 

0.1 . 0 . 4  0.71.0 2.5 4.0 10micrometers 100 

luvb I uva I violet] blue] green I y I o I red I short infrared 
290 320 400 430 490 560 630 760 nanometers 2500 

I 

FIGURE 10.1. Part of the electromagnetic spectrum showing names of some of 
the wavebands and some of the biologically significant interactions with plants 
and animals. 
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with a sun zenith angle of 60 degrees, the median wavelength in the 400 
to 700 nm waveband is about 550 nm, for which the photon energy is 
2.17 x 10' Jlmol. This is an approximate but useful number for convert- 
ing between total energy in the PAR waveband and number of photons 
for solar radiation. This conversion factor, which is often expressed as 
4 . 6 ~  mol quanta per J, is within about ten percent of the estimate for 
cloudy skys and various artificial lights used in growth chambers. 

10.2 Blackbody Radiation 

As was mentioned, photons are emitted or absorbed because of discrete 
energy transitions in the emitting or absorbing medium. Each allowable 
transition produces photons at a single wavelength. If there are many al- 
lowable transitions at closely spaced energy levels, the spectral lines tend 
to merge into an emission or an absorption band. If there are an infinite 
number of transitions spaced throughout the electromagnetic spectrum, 
the medium is a perfect radiator or absorber. It will absorb all radiation 
falling upon it and will radiate the maximum amount of energy that a 
medium at its temperature is capable of radiating. Such a medium is 
called a blackbody or full radiator. No such material exists in nature, 
but some materials approach this behavior over parts of the electromag- 
netic spectrum. Thus we may speak of a blackbody radiator at visible 
wavelengths or a blackbody radiator at thermal wavelengths, but would 
not necessarily expect the same material to be a blackbody in both wave 
bands. Snow is a very poor absorber of visible radiation, but almost a 
perfect blackbody in the far infrared. 

10.3 Definitions 

Radiative transfer results in the transport of energy from a source through 
a medium to a receiver. This exchange of energy is characterized by the 
direction of the ray between the source and the receiver, wavelength of 
radiation, time, coordinates of the point of interest, and the area of the 
region under consideration. A slight variation on this idea occurs when a 
surface is being viewed from one direction while an incident ray is from 
another direction. Although the object being viewed could be considered 
the source and the viewer could be considered the receiver, it is more 
useful if both source and view directions are considered simultaneously 
and so the term bi-directional arises because of the two directions: source 
and view. Terminology in radiative transfer can be quite complex so the 
terms used here are only a small subset of the complete terminology. 
Nicodemus et al. (1977) give a much more extensive set of terms and 
definitions. 

Terms that we use are listed as follows: 

RadiantJEux (W): The amount of radiant energy emitted, transmitted, 
or received per unit time. 
Radiantpux density (@, w/m2): Radiant flux per unit area. 
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Irradiance (w/m2): Radiant flux density incident on a surface. 
Radiant spectral JEux density (E(h),W m-2 pm-'): Radiant flux 
density per unit wavelength interval. 
Radiant intensity (I, Wlsr): Flux emanating from a surface per unit 
solid angle. 
Radiance (N, W m-2 s f1 ) :  The radiant flux density emanating from 
a surface per unit solid angle. 
Spectral radiance (W m-2 sr-' ,urn-') Radiance per unit wavelength 
interval. 
Radiant emittance (W/m2): Radiant flux density emitted by a surface. 

The relationship between various terms describing radiative transfer 
and energy, time, area, wavelength, and direction, which we previously 
indicated might be required to specify the radiant energy environment of 
an organism, can be seen in Fig. 10.2. Obviously, we do not need all of 
these terms all of the time. 

The terms in Fig. 10.2 that are listed on the "hemispherical" side are 
used extensively in considering balances of energy fluxes on surfaces such 
as canopies, leaves, lakes, animals, etc. Terms listed on the "directional" 
side of Fig. 10.2 are used widely in remote sensing, where radiometers 
(which may be handheld, aircraft-mounted, or satellite-borne) typically 
view from a particular direction and sense over a small range of angles 
about that direction. This small range of angles is typically referred to 
as the instantaneous field of view (IFOV). For example, an infrared ther- 
mometer may be pointed downward at the soil with a zenith angle of 50" 

I Radiant Energy (J) 

I add time 

Radiant Flux (Jls - W) 

Radiant Flux Density (Wlrn2) 

lrradiance (incident) 

Radiant Ernittance (emitted) 

add wavelength 

Radiant S ectral 
Flux ~ e n s r t y  
(WlmPlum) 

directional 

L 
Radiant Intensity (Wlsr) 

1 add area 

Radiance (WlmPlsr) 

1 add wavelength 

S ectral Radiance 
(&I rn2/sr/urn) 

FIGURE 10.2. Relationships among terms for describing the radiant energy 
environment. 
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and an azimuth angle of 180" (pointed due South) and its IFOV may be 
10". Thus the measured radiance, which for such an infrared thermometer 
is probably contained in the wavelength band 8 to 14pm, is appropriate 
for zenith angles from approximately 45 to 55", and azimuth angles from 
175 to 185". 

Clearly, if enough radiance measurements of a surface are made, in- 
tegration of these radiance measurements over all the appropriate angles 
provides an estimate of the radiant flux density. Usually this is not done 
because of the considerable difficulty associated with making all the 
directional radiance measurements. 

In environmental biophysics we often want to relate remote sensing 
observations to measurements of radiant or heat fluxes from animals 
or vegetation. For example, measurements of directional radiometric 
temperature from an infrared thermometer may provide an estimate of 
"surface temperature" useful in characterizing the energy budget of a 
crop. However, great care must be taken in mixing hemispherical and di- 
rectional quantities, because directional quantities may depend strongly 
on view angle and have complex relations to hemispherical quantities. In 
this book, we are mainly concerned with hemispherical quantities. 

The most important terms for organism energy balance are the radiant 
emittance and irradiance. Sets of terms similar to those in Fig. 10.2 are 
also defined for just the visible portion of the spectrum. When the fluxes 
are weighted according to the human eye response they are referred to as 
photometric units, and when they are weighted according to the photosyn- 
thetic or quantum response they are referred to as photosynthetic photon 
flux units. The photometric term corresponding to irradiance is the illumi- 
nance, and has units of lumens/m2 or lux. The photosynthetic term is the 
photosynthetic photon flux density (PPFD) and has units of mol quanta 
m-2 s-' . As with photosynthesis, one can convert between irradiance and 
illuminance. The conversion factor depends on the spectral distribution 
of the radiation, as it does with PAR. For the solar spectrum, 1 mmol 
m-2 s -1 -- 5 1 lux. Gates (1980) shows how to do these conversions. 

Example 10.1. The irradiance of a surface is 500 w/m2 in the PAR 
waveband. What is the PPFD? Assume that the source is solar radiation. 

Solution. It was previously determined that energy content of solar 
radiation in the PAR waveband is 2.35 x lo5 Jlmol. The PPFD is therefore 

J 1 mol mol 
PPFD = 500 - x = 2.1 - 

m2 s 2.35 x lo5 J m2 s 

or 2 1 0 0 ~  mol m-2 s-' . The irradiance of a horizontal surface under full 
sun is around 500 w/m2 in the PAR waveband, so the PPFD just calculated 
is typical of maximum values measured on clear days. 

Example 10.2. An instrument for roughly measuring spectral dis- 
tribution of radiation in plant environments has blue, red, and near 
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infrared filters. On the red range it reads out a spectral flux density of 
1.3 W mP2 nm-' . What is the irradiance in that spectral band? 

Solution. Without knowing the bandwidth of the filter, it is impossible 
to know the irradiance, but rough estimates can be made. From Fig. 10.1 
it can be seen that the red band has a width of 130 nm. If the filter covered 
the entire band, then the red irradiance would be 1.3 W m-2 nm-' x 
130nm = 1 6 9 ~ m - ~ .  

Radiant energy interacts with matter through reflection, transmission, 
absorption, and emission. The interaction with the material may depend 
on the direction of the incident radiation, the direction from which the 
surface is viewed, and the wavelength of the radiation. The wavelength 
dependence is recognized in the following definitions. 

Absorptivity [ a ( A ) ] :  The fraction of incident radiant flux at a give 
wavelength that is absorbed by a material. 

Emissivity [&(A)]:  The fraction of blackbody emittance at a given 
wavelength emitted by a material. 

Reflectivity [ p ( A ) ] :  The fraction of incident radiant flux at a given 
wavelength reflected by a material. 

Transmissivity [t (A)] :  The fraction of incident radiant flux at a given 
wavelength transmitted by a material. 

Once radiant energy arrives at a receiver it is either absorbed, trans- 
mitted, or reflected. Since all of the energy must be partitioned between 
these, it can be written that 

For a blackbody, a ( A )  = 1 ,  so p  ( A )  = t ( A )  = 0. 
Normally we are interested in the absorption, transmission, reflection, 

or emission over an entire waveband, rather than at a single wavelength. 
Therefore, for example, a reflection coefficient is defined as 

where E ( A )  is the radiant spectral flux density of the incident radiation. 
Absorption and transmission coefficients are defined similarly. The bands 
of interest are generally those shown in Fig. 10.1. We return to this topic 
in Ch. 11. We also integrate the emissivity over broad wavebands, and 
normalize it as shown in Eq. (10.2), but we do not change its name to 
emission coefficient, nor do we usually show the overbar. We just omit the 
wavelength in parenthesis. This is because we usually use emissivity to 
compute emittance of thermal radiation. The symbol E therefore always 
means the weighted average emissivity over the 4 to 80 pm waveband. 
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In environmental biophysics we often deal with the thermal radiation 
exchange between objects and the clear sky. Under these conditions the 
emissivity in the 8 to 14 p m  portion of the 4 to 80 p m  wavelength band 
is most important. On the rare occasion that we are interested in the 
emissivity of a particular wavelength band, for example the 8 to 14 p m  
wavelength band of many infrared thermometers, we use EgPl4. 

From Eq. (10.2) it can be seen that radiative properties of a material 
(reflection, absorption, transmission coefficients, and emissivity) depend 
on the wavelength distribution of the source of radiation, as well as the 
characteristics of the material. A useful way to conceptualize radiation 
interaction with matter is to always recognize that a source, a medium, 
and a receiver are involved. The intervening medium is often referred to 
as a filter. Filters can be natural, such as the atmosphere or water, or they 
can be artificial and manufactured to accomplish some particular task. 
Table 10.1 contains several relevant comnbinations to illustrate this. 

The following information is always required to assess the interaction 
between radiation and matter. 

1. Radiant flux density (or other measure of radiant energy) as a function 
of wavelength associated with the source; 

2. Transmission or reflection coefficients of the intervening media. 
3. Absorptivity as a function of wavelength for the receiver and the re- 

sponse of this receiver as a function of wavelength to the absorbed 
radiation (R (A)). 

Consider Case 1 in Table 10.1. Most ofthe solar radiation is transmitted 
through the atmosphere (see Fig. 10.5) and is incident on a leaf. The 
relevant leaf absorptivity depends on the interaction between radiation 
and the leaf of interest. (For heating of the leaf by direct sun rays, the solar 
absorptivity is about 0.5 (Fig. 11.5) and all of this absorbed radiation is 
converted into heat, so the response R(so1ar) is unity. For photosynthesis, 
the PAR absorptivity is about 0.85 and photosynthetic rate depends on the 
magnitude of the absorbed photons.) A response of about 0.03 mol C02 
fixed in photosynthesis per mol of photons absorbed is typical for corn. 
Thus the response of the leaf R(PAR) to radiation is 0.03 rnol COz mol 
quanta-'. In Case 2 in Table 10.1, glass and water often are used to filter 

TABLE 10.1. Several conbinations of source, intervening medium, and 
receiver of interest in environmental biophysics. 

Case No. Source Medium Receiver 

1 Sun Atmosphere Leaf 
2 Growth Chamber Lamp Glass + Water Leaf 
3 Sun + Sky Forest Canopy Human Eye 
4 Soil Glass window Infrared Thermometer 
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out excess heat from lamps in growth chambers so that leaves can absorb 
high levels of PAR but not be simultaneously exposed to high levels of 
radiant heat not useful in photosynthesis. This permits better control of 
leaf temperature. In Case 3, the human eye just happens to have its greatest 
sensitivity in the green wavelengths (0.55 pm) where the absorption of 
visible radiation by leaves is minimal (See Fig. 11.5); perhaps this is a 
useful adaptation for survival. Case 4 is interesting because the infrared 
thermometer has a response of 1.0 in the 8 to 14 pm wavelength band 
(R(8-14 pm) = 1.0). In this wavelength band, thermal radiation emitted 
by the soil is completely absorbed by the glass because the transmissivity 
of the glass is zero in this wavelength band. Although the glass transmits 
90 percent of the visible radiation "seen" by human eyes, allowing the soil 
to be seen clearly through the glass, it does not transmit any of the thermal 
radiation emitted by the soil to the infrared thermometer. Because the glass 
emits thermal radiation, the infrared thermometer actually measures the 
temperature of the glass not the soil. 

We have shown that emission and absorption of radiation are linked by 
the same procesethat of changing the energy status of the emitting or 
absorbing atoms or molecules. Thus we would expect the emissivity and 
absorptivity of a material at a given wavelength to be equal, that is, &(A) = 
a@), which is a statement of a principle due to Kirchhoff. It is important 
to recognize that the absorptivity or emissivity values represent only the 
fraction ofpossible absorption or emission at a particular wavelength, and 
say nothing about whether or not radiation is actually being absorbed or 
emitted at that wavelength. For example, carbon black has an emissivity 
and absorptivity for visible radiation of nearly unity. When carbon black 
is at room temperature, it may absorb radiation in the solar waveband 
but emits negligible quantities in that waveband. The radiant emittance 
at such short wavelengths is near zero not because the emissivity is low, 
but because there is no energy to be emitted in the solar waveband from 
such a cold surface. Methods for computing the spectral emittance at a 
particular wavelength will be given in the next section. 

Remote sensing is playing an increasingly important role in plant bio- 
physics. To analyze the interaction of radiation with plant canopies and 
soil surfaces we need to specifically incorporate directionality into the 
more general definitions we have just given. The following four defi- 
nitions are for reflectivity, but corresponding ones could be given for 
transmissivity. 

Bi-directional reflectance (sr-I): The ratio of the reflected radiance 
from a single view direction to the irradiance from some incident view 
direction that is confined to a very narrow range of incident angles. 

Directional-hemispherical reJlectance: The ratio of the reflected ra- 
diance integrated over the entire view hemisphere to the irradiance 
from a single view direction that is confined to a very narrow range 
of incident angles. 
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Hemispherical-directional reflectance: The ratio of the reflected radi- 
ance from a single view direction to the incident irradiance averaged 
over the entire incident hemisphere of incoming radiation. 

Bi-hemispherical reJEectance: The ratio of the reflected radiance in- 
tegrated over the entire view hemisphere to the incident irradiance 
averaged over the entire incident hemisphere of incoming radiation. 

In remote sensing the term bi-directional reflectance distribution func- 
tion (BRDF) refers to the entire distribution of bi-directional reflectances 
for all possible view directions. Technically the BRDF is difficult to mea- 
sure because the solid angle of the source should be infinitesimal for 
the measurement. The only practical source for BDRF measurements on 
soils and plant canopies is the sun, and it is not only not an infinitesimal 
source, but is always accompanied by scattered radiation from the sky. 
The more useful bi-directional reflectance factor (BRF) is the ratio of the 
reflected radiance from a single view direction to the reflected radiance 
from an ideal, perfectly diffuse surface experiencing the same irradiance. 
Each of the four directional reflectances defined above can have the word 
factor appended to them if the denominator of the ratio is for an ideal, per- 
fectly diffuse surface. Emission from a surface does not involve incident 
radiation so the term "directional emissivity" is appropriate. 

An interesting fact is worth noting here; the bi-directional reflectance 
distribution function is not limited to a maximum value of unity like the re- 
flectivity, bi-hemispherical reflectance, and the bi-directional reflectance 
factors are. 

Without dealing with problems of radiation measurement, it may be 
difficult to understand the applications of these terms. The following ex- 
ample may help. A pyranometer is an instrument sensitive to the solar 
wavelength band that measures the flux density on a horizontal plane aris- 
ing from the entire hemisphere above that plane. A pyranometer could 
be used to measure the irradiance of a crop on a clear day when the solar 
beam dominates the incident flux. The pyranometer could then be inverted 
to measure the radiation reflected from the crop. The ratio of reflected to 
incident radiation would be a bi-hemispherical reflectance, but because 
the direct beam of the sun dominates the radiance, it would approxi- 
mate a directional-hemispherical reflectance. The ratio of the same set 
of measurements made on an overcast day would be a bi-hemispherical 
reflectance. The two measurements would be similar, but not necessar- 
ily equal because of the directional interaction of the surface with the 
directional solar beam. Instruments that have a narrow view angle, such 
as aircraft and satellite remote sensing devices, make measurements that 
approximate the bi-directional reflectance factors. For example, the radi- 
ance measured by a narrow IFOV radiometer from some angle divided by 
the radiant flux density incident on the surface from the sun (irradiance) 
would approximate the bi-directional reflectance of the surface from the 
viewing angle. If this narrow IFOV radiometer were used to measure the 
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radiance of a perfectly diffusely reflecting panel with identical orientation 
and illumination, then the ratio of the measured radiance of the surface 
and the measured radiance of the perfectly diffusing panel would be the 
bi-directional reflectance factor. 

10.4 The Cosine Law 

If a small area is exposed to a point source of radiation, so that the rays of 
light hitting the surface are nearly parallel, the irradiance of the surface 
depends on its orientation with respect to the radiant beam. This is easily 
seen by considering the area on a surface covered by a beam of parallel 
light of fixed size as its angle with respect to a normal to the surface 
increases (Fig. 10.3). The radiant flux density on the area perpendicu- 
lar to the direction of the beam remains constant, but the beam covers 
a larger and larger area as the zenith angle (8)  increases, so the flux 
density at the surface decreases. If the area covered by the beam at 
normal incidence is A, and the area at angle 8 is A then APIA = cos 8. 
This leads directly to Lambert's cosine law: 

@ = @, cos 8 (10.3) 

where @, is the flux density normal to the beam, @ is the flux density at 
the surface, and 8 is the angle between the radiant beam and a normal to 
the surface, which is referred to as the zenith angle. 

The only common source of parallel light in natural environments is 
the sun, and Lambert's law is used to calculate the direct solar irradiance 
of slopes, walls, leaves, or animals. To do the calculation, @, and the 

FIGURE 10.3. The area covered by a beam of parallel light increases as the angle 
8 between the beam and a normal to the surface increases. 
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angle the sun makes with a normal to the surface need to be known. 
Equation (10.3) can also be used to find the irradiance of a surface when 
the radiance of the surroundings is known, as shown in the following 
example. 

Example 10.3. A unit area on the ground is illuminated by a hemi- 
sphere of isotropic radiation with a radiance of N W m-2 sr-' (isotropic 
means that the radiance is constant for all incident directions). What is 
the irradiance of the surface? 

Solution. The irradiance of the surface by a small increment of solid 
angle dQ, which makes an angle 0 with a normal to the surface, is 
N cos 0dS2. The product of the radiance and the solid angle gives the 
flux density of radiation on a surface perpendicular to the direction of 
that radiation. The cosine of the angle converts this to flux density on the 
horizontal ground. To find the total irradiance of the surface, integrate the 
radiance of the hemisphere over all solid angles that are visible from the 
surface. If 1C. is the azimuth angle, then dS2 = sin 0 de I,+. The irradiance 
is therefore 

so the irradiance of a surface under isotropic radiation is always n times 
the radiance. Here N is constant and can be taken out ofthe integral. Ifthe 
radiation were not isotropic the irradiance of the surface could be found 
in the same way, but the angular distribution of N would need to be part 
of the integration. 

An ideal diffusely reflecting surface, sometimes referred to as an ideal 
Lambertian surface, has a radiance that is proportional to the cosine of 
the angle between a normal to the surface and the view direction. The 
directional-hemispherical reflectance of such a surface is unity. In re- 
mote sensing, various surfaces are used to approximate a Lambertian 
surface, such as molded Halon or barium sulfate. The reflection coeffi- 
cients of natural surfaces, such as lakes, vegetation, soils, and rocks may 
differ substantially from that of an ideal surface. Therefore, care must be 
taken when specifing what is meant when referring to the "reflectance" of 
some natural surface. Biophysicists and micrometeorologists have used 
the term albedo to refer to the bi-hemispherical reflectance integrated over 
the entire solar spectrum. This operational approach gets around some of 
the complexity. 

10.5 Attenuation of Radiation 

Parallel monochromatic radiation propagating through a homogeneous 
medium that attenuates the beam will show a decrease in flux density 
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described by Bouguer's or Beer's law: 

where @, is the unattenuated flux density, z is the distance the beam 
travels in the medium, and k is an extinction coefficient (m-') for the 
medium. We use this law to describe light penetration in the atmosphere 
and in crop canopies. The law strictly applies only for wavebands narrow 
enough that k remains relatively constant over the waveband. It is often 
used, however, for much broader bands of radiation. We use it to describe 
the attenuation of the entire solar spectrum in the atmosphere. For broad 
wavebands attenuation may not exactly follow an exponential law. If 
changes in kz are not too great, however, Eq. (10.4) can still give a good 
approximation of the attenuation of broadband radiation with distance. 

Example 10.4. When Eq. (10.4) is used to find the attenuation of solar 
radiation by the atmosphere, distance is measured in terms of an airmass 
number, m = 1/ cos 8. The extinction coefficient is then per airmass, 
rather than per meter. If measured solar beam radiation were 871, 785, 
and 620 W/m2, at zenith angles (the angle between the solar beam and 
a vertical) of 30,45, and 60 degrees, find the extinction coefficient, k, 
and a,. 

Solution. Taking the logarithm of both sides of Eq. (10.4) gives In cP = 
In @, - km, so a regression of In@ on m will have a slope of -k and an 

Airmass Number 

FIGURE FOR EXAMPLE 10.4. 
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intercept of In@,. The necessary computations are in the table. A graph 
of the data is shown in the accompanying figure. 

Zenith angle 9 Airmass rn Q, In Q, 

30 1.15 871 6.770 
45 1.41 785 6.666 
60 2.00 620 6.430 

The slope is -0.4 so k = 0.4 per airmass. The intercept is 7.23 so 
@, = exp(7.23) = 1380 w/m2; this value is near the solar constant of 
about 1360 w/m2. 

10.6 Spectral Distribution of Blackbody 
Radiation 

One of the major breakthroughs of modern physics was the discovery 
of a correct model for the spectral distribution of blackbody radiation. 
Classical approaches predicted that the amount of energy emitted by a 
surface would increase without bound as the wavelength of the radiation 
decreased. This implied that all of the energy in the universe would ulti- 
mately be funneled to short wavelengths and emitted; a situation referred 
to as the "ultraviolet catastrophe." The catastrophe was the fault of the 
model, of course, not of nature. This was all solved by Planck's quantum 
hypothesis, that energy is emitted in discrete packages, or quanta, whose 
energy and wavelength are related by Eq. (10.1). Planck's model for the 
radiant spectral flux density from a blackbody radiator is 

Here Eb(h, T) (W/m3) is the radiant spectral flux density or spectral 
emittance, T is the kelvin temperature, h is Planck's constant, and k is the 
Boltzmann constant (1.38 x JK). Blackbody spectra are plotted 
in Fig. 10.4 for sources at 6000 K and 288 K, corresponding roughly to 
sun and earth emittance spectra. Note that we have used a logarithmic 
scale for wavelength so that both spectra can be shown in the same graph. 
The two spectra overlap slightly between 3 and 4 pm, but the amount of 
energy in the overlap is negligible. We therefore specify 4 p m  as the top 
end of the solar spectrum and the bottom end of the terrestrial thermal 
spectrum. The scale for the sun emittance is lo6 larger than for the earth. 
Essentially all of the energy emitted by the earth comes from the sun, but 
the earth intercepts only a very small fraction of the energy the sun emits. 

The wavelength of peak spectral emittance is a function of temperature 
of the emitting surface, as can be seen from Fig. 10.4. The wavelength 
at peak emittance (on a wavelength basis) is found by differentiating 
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FIGURE 10.4. Emittance spectra for 6000 K and 288 K blackbody sources 
approximating.emission from the sun and the earth. 

Eq. (10.5) with respect to A, setting the result to zero, and solving for 
temperature. The result is called Wien's law: 

where h, is in micrometers. The wavelengths for peak emittance for the 
6000 K and 288 K sources in Fig. 10.4 are 0.48 and 10 pm respectively. 

10.7 Spectral Distribution of Solar and Thermal 
Radiation 

The actual extraterrestrial solar spectrum is shown in Fig. 10.5. Here it 
is plotted using a linear wavelength scale. It has nearly the same shape 
as a blackbody source at 6000 K, and the wavelength at peak emission 
is between blue and green, as expected from the Wien's law calcula- 
tion. As solar radiation passes through the atmosphere of the earth, 
some wavelengths are almost completely absorbed. The ozone layer in 
the stratosphere absorbs much of the ultraviolet radiation. Water 
vapor is the main absorber in the infrared. 

The strong absorption of short wavelength ultraviolet radiation by 
ozone is of particular importance to living organisms. Referring to Fig. 
10.1, it can be seen that radiation at these wavelengths can cause skin 
cancer. It is actually capable of inducing mutation in any genetic material 
and of germicidal action. This is the reason for the recent concern over 
destruction of the ozone layer by release into the atmosphere of chlo- 
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FIGURE 10.5. Spectral irradiance of the sun just outside the atmosphere and at sea 
level through a 1.5 airmass atmospheric path. Atmospheric absorption at short 
wavelengths is mainly from ozone. At long wavelengths it is mainly from water 
vapor (redrawn from Gates, 1980). 

rofluorocarbons. These compounds destroy ozone and could increase the 
flux of harmful ultraviolet radiation at the surface of the earth. 

Energy over the entire solar spectrum is reduced by Rayleigh (small- 
particle) and Mie (large-particle) scattering. Rayleigh scattering is from 
the molecules of air and is most pronounced at short wavelengths so the 
scattered radiation is blue. This is the source of the blue color of the sky. 
Blue wavelengths are preferentially scattered out of the solar beam, caus- 
ing the sun to appear red. Mie scattering is from dust, smoke, and other 
aerosols in the atmosphere. Conditions can exist which result in preferen- 
tial scattering of long wavelengths by Mie scatterers, but generally there 
is little wavelength dependence. 

About half of the energy in the solar spectrum is at wavelengths shorter 
than 0.7 pm and half at longer wavelengths (actually about 45 percent is 
in the visible and 55 percent in the near-infrared). The spectrum changes 
with solar zenith angle, cloudiness, and atmospheric composition, but 
the distribution between visible and infrared remains almost unchanged. 
Many of our computations require that the energy content of these 
two wavebands are known. Nature made it easy for us by consistently 
partitioning approximately half to each. 

The mean emission of the earth approximates that of a blackbody with 
a temperature of 288 K. The spectral emittance for such a blackbody is 
shown in Fig. 10.6. Almost all of the radiation is at wavelengths longer 
than 4 p m  and the wavelength at peak emission is 10 pm. The emittance 
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FIGURE 10.6. Spectral distribution of thermal radiation from the earth and from 
the clear atmosphere. Emission bands below 8 and above 18 pm are mainly from 
water vapor. Bands between 13 and 18 pm are mainly COz. The narrow band at 
9.5 pm is from ozone (redrawn from Gates, 1962). 

spectrum of most terrestrial objects is similar to Fig. 10.6, but the peak 
location and height shift somewhat depending on the surface temperature. 

Thermal radiation is emitted and absorbed in a clear atmosphere 
mainly by water vapor and C02, with a narrow ozone absorption band 
around 9.5 pm. Infrared radiation is absorbed or emitted as a result of 
changes in the vibrational and rotational energy levels of molecules. Wa- 
ter vapor, C02, and O3 are the only common atmospheric constituents 
with energy levels that are excited by thermal radiation. An atmospheric 
emittance spectrum is shown in Fig. 10.6 along with the 288 K blackbody 
spectrum. It can be seen that the atmosphere acts almost like a blackbody 
in some wavebands where there is strong absorption and emission. In 
other wavebands the absorptivity and emissivity are low. The "window" 
between 8 and 13 pm has particular importance. This coincides with 
the blackbody emission peak for the earth at 288 K. Much of the radi- 
ation emitted by the earth in these wavelengths is not absorbed by the 
atmosphere and is lost to space. 

10.8 Radiant Emittance 

The total radiant energy emitted by a unit area of surface of a blackbody 
radiator is found by integrating Eq. (10.5) over all wavelengths. The result 
is the Stefan-Boltunann law: 

where B is the emitted flux density (w/m2), T is the Kelvin tempera- 
ture, and a is the Stefan-Boltzmann constant (5.67 x W m-2 K - ~  1. 
Values of B at various temperatures are given in Table A.3. 
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Example 10.5. Find the average radiant emittance of the earth and the 
sun. 

Solution. The earth approximates a blackbody radiator emitting at 
288 K. The average emittance of the earth is therefore (5.67 x 

W m-2 K - ~  x (288 K ) ~  = 390 w/m2. The sun emittance is ap- 
proximately that of a blackbody at 6000 K. Using Eq. (10.7) again, the 
energy emitted is therefore 73 M W / ~ '  at the surface of the sun. 

The energy emitted by nonblackbodies is given by: 

@ = / &(A)Eb(h, t) dh (10.8) 

where &(A) is the spectral distribution of emissivity and Eb(h, T) is from 
Eq. (10.5). A gray body is one which has no wavelength dependence of 
the emissivity so the integration produces: 

Natural surfaces are not perfect gray bodies, and the result of applying 
Eq. (10.8), is a power of T that is not exactly 4 in the Stefan-Boltzmann 
equation. In practice, for the range of normal terrestrial temperatures, all 
bodies can be treated as gray bodies and Eqs. (10.7) and (10.9) can be 
used with an appropriate average emissivity. This approach also works 
for computing atmospheric emittance, even though the atmosphere is far 
from a gray body. In the next chapter we show that the emissivity of most 
natural surfaces is between 0.95 and 1 .O. For most of our calculations we 
assume a value of 0.97. The emissivity of a clear atmosphere, however, 
is much lower, as can be seen in Fig. 10.6. Clouds increase the emissivity 
of the atmosphere and the emissivity of a completely overcast sky with a 
low cloud base is near unity. 

Several empirical formulae are available for computing estimates 
of clear sky emissivity. One with reasonable theoretical justification is 
(Brutsaert, 1984): 

where e, is the vapor pressure (Ha) measured at height of one to two 
meters and T, is the air temperature (kelvins). The reasoning behind this 
formula is that atmospheric thermal radiation is primarily a function of 
the water vapor concentration in the first few kilometers of the atmosphere 
and is most strongly dependent on the vapor concentration in the first few 
hundred meters. Thus a measurement of vapor concentration at a height 
of one to two meters, combined with estimates of vapor and temperature 
profiles to 5 km, can be used to estimate emissivity. 

Since vapor pressure and minimum temperature are strongly corre- 
lated, correlations have also been made between temperature at a height 
of one to two meters and clear sky emissivity. Swinbank (1963) suggests 
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the formula: 

Brutsaert (1984) reconciled Eqs. (10.10) and (10.1 1) using an empirical 
correlation of temperature and vapor pressure. We use Eq. (10.11) for 
most of our computations, and values are listed in Table A.3. If vapor 
pressure data are available, Eq. (10.10) is probably preferable. 

Clouds have an emissivity of one, so when clouds are present, at- 
mospheric emissivity is higher than for a clear sky. The atmospheric 
emittance on cloudy days can be estimated by adding the energy emit- 
ted by the clear portions of the sky to the energy emitted by the clouds. 
Monteith and Unsworth (1990) give the simple relationship 

where c is the fraction of the sky covered by cloud and .sac is given by 
Eq. (10.1 1) or (10.10). When c is zero, .sa(c) = .sac. When c = 1, 
E,(c) = 0.84 + 0.16.sac. At a temperature of 20" C, this gives a sky 
emissivity of 0.97. 

Example 10.6. Compare clear sky and completely overcast sky emit- 
tance when air temperature is 20" C. 

Solution. Using Eq. (10.7) or Table A.3 the black body emittance can 
be found. Equation (10.7) gives 

The clear sky emissivity (Eq. (10.11) or Table A.3) is 9.2 x x 
(273.16 + 20)' = 0.79. The emissivity for a completely overcast sky 
(Eq. (10.12), c = 1) is 0.16 x 0.79 f 0.84 = 0.97. The emittances are 

clearsky: 0.79 x 419 = 331 Wm-' 

cloudy sky: 0.97 x 419 = 406 W m-2. 

The cooling and frost that occur on clear nights are sometimes explained 
as "radiation being lost to outer space." This description is both overly 
dramatic and wrong. The difference between a clear night and a cloudy 
night is not the outgoing but the incoming radiation. The ground receives 
less radiation from the atmosphere on clear nights (and days) than on 
cloudy ones. 

We could compute the ernittance of the sun just as we do the earth and 
atmosphere, but this has little value for environmental biophysics. We 
assume the output of the sun is constant and use that constant, measured 
value for all of our calculations. The mean radiant flux density outside 
the atmosphere of the earth and normal to the solar beam is about 1360 
W m-2. This value is known as the solar constant. The actual flux density 
varies by about f 1.5 percent due to random variations in solar activity 
and f 3.5 percent annually due to the predictable variation in earth-sun 
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distance. These variations are much smaller than other sources of uncer- 
tainty in the radiation budget, so we do not try to account for them in our 
calculations, and assume that the solar input just outside the atmosphere 
is constant and equal to the solar constant. 
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Problems 

10.1. The median wavelength for solar radiation in the 0.3 to 3 pm wave 
band is approximately 0.7 pm. If the irradiance is 1 kw/m2, what 
is the photon flux? 

10.2. When the energy flux density in the 400 to 700 nm waveband is 
200 w/m2, what is the photon flux density of PAR (mol m-2 s-I)? 

10.3. When photon flux density is 1000 pmol mW2 s-I in the 400 to 
700 nm waveband, what is the energy flux density (w/m2) in the 
PAR waveband? What is the flux density of solar radiation (all 
wavelengths)? 

10.4. What is the wavelength ofpeak emittance for a 2800 K incandescent 
light bulb? 

10.5. If your mean surface temperature is 28" C, what is your emittance? 
If the mean wall temperature in the room in which you are standing 
is 20" C, what is the average thermal irradiance at your surface? 
Estimate your net radiant heat loss. Assume = 0.97 and &,ll = 
1.0. 

10.6. Compare the radiant emittance of a clear sky and a completely 
overcast sky, both at 0' C. How much additional radiant energy 
does the ground receive on an overcast night? 
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in Natural 

Environments 11 
Before beginning a detailed discussion of radiant energy budgets of plants, 
animals, canopies, and soils, we need to determine what information 
will be required and how to obtain that information. An environmental 
biophysicist may approach the study of radiant energy exchmgg in two 
different ways. For thefirst, detailed observations of radiant flux densities 

-- --- 
to and from an organism are needed to compute a detailed energy budget. --- . 

These detailed observations must be obtained by direct measurement at 
the time the energy budget is being determined. The-second type of study 
simulates the behavior of parts of_ann<:osystem. Knowing the exact value -- 
of a radiant flux density may not be as important as having the correct 
relationship among variables. Models of the fluxes, extended from the 
basics covered in Ch. 10, are used for studies of the second type. The 
models can be counted on to give reasonable estimates (f 10%) of average 
flux densities, but they are usually not adequate as substitutes for careful 
field measurements of radiant fluxes for detailed energy budget studies. 
This chapter presents models for estimating solar and thermal rad@t - 
fluxes in the natural environment. - - _ _  

Streams of solar radiatioi received by an organism are 

1. beam, or.direct.radiation, directly from the sun, 
2. diffuse radiation, scattered by sky and clouds, and 
3. reflected -. radiation from terrestrial objects. 

Separating solar radiation into at least this many components is nec- 
essary because the amounts and directional characteristics are different 
for each. Beam radiation is highly directional and irradiance at a surface 
is determined using Lambert's cosine law (Eq. (10.3)). Diffuse sky and @ z Fdrrr$ 
reflected ground radiation are scattered from all directions. The diffuse 

&adiance at a surface is computed by integrating the radiance o G -  
roundings using the procedure given in Ch. 10. To find the ... components 
of-the solar radiation buAet the following need to be known: the flux 
C 
, densikof solar radiation perpendicular to the solar beamYhthe anp15: the 

beam makes with the absorbing surface, and the flux densities of sky 
diffuse and ground reflected radiation. 
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The thermal radiation in,@r environments comes from two dis- 
tinct sources,Jhe ~ o u n d  ahd the sky. In ----- enclosures or under vegetation 
the thermal radiation comes from the walls of the enclosure or from 
the-canopy. All of this radiation is diffuse, and the Gadiance, again, is 
r- - 

computed by integrating the radiance over all sources surrounding the or- 
ganism surface.aapter-10 shows how to compute the radiance of these 
sources. 

11.1 Sun Angles and Daylength 

The location of the sun in the sky is described in terms of its altitude (/3, 
&vation angiEabo;e the horiz-on) or zenith angle -- (I,+, the an&e%easured' 
from the vertical) and its azimuth angle_CA_Z,-angle from true north or 
south measured in the horizontal plane). Several coordinate systems are 
possible with azimuth angles: 

-@athematical: zero degrees is south and angles increase in the counter 
clockwise direction from 0 to 360°, 

2. compass: zero degrees is north and angles increase from 0 to 360" in 
a clockwise direction, and 

3. astronomical: zero degrees is south and positive angles increase from 
0 to 180" in a clockwise direction; the counter clockwise direction is 
labeled with negative angles from 0 to - 180". 

We use the mathematical coordinate representation. Elevation and 
* _ _  _^I_X^. I---I_- I_ 

zenith angles are related by /3 = 90 - I,+ (angles in degrees). The zenith 
angle of the sun depends on the time of day, the latitude of the site, and 
the time of year. It is calculated from 

where q5 is the latitude, 6 is solar declination, t is time, and to is the 
time of solar noon. The earth turns at a rate of 360" per 24 hours, so the 
15 factor converts hours to degrees. Time, t is in hours (standard local 
time), ranging from 0 to 24. Latitude of a site is found in an atlas. Solar 
declination ranges from +23.45" at summer solstice to -23.45' at winter 
solstice. It can be calculated from 

sin6 =O.39785 sin[278.97 + 0.9856J + 1.9165 sin(356.6 + 0.9856J)l 
(1 1.2) 

where J is the calendar day with J = 1 at January 1. Some values of S 
are given in Table 1 1.1. 

The time of solar noon is calculated from 

where LC is the longitude correction and ET is the equation of time. 
LC is +4 minutes, or + 1 / 15 hour for each degree you are east of the 
standard meridian and - 1 / 15 hour for each degree west of the standard 
meridian. Standard meridians are at 0, 15,30, . . . ,345". Generally time 
zones run approximately +7.5 to -7.5" either side of a standard meridian, 
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TABLE 1 1.1. Solar declination and Equation of Time for various 
dates. 

Declin. E. T. 
Date Day Degree hours 

Jan 1 1 -23.09 -0.057 
Jan 10 10 -22.12 -0.123 
Jan 20 20 -20.34 -0.182 
Jan 30 30 -17.88 -0.222 
Feb 9 40 -14.95 -0.238 
Feb 19 50 -1 1.57 -0.232 
Mar 1 60 -7.91 -0.208 
Mar 11 70 -4.07 -0.170 
Mar 21 80 -0.11 -0.122 
Mar 31 90 3.84 -0.072 
Apr 10 100 7.62 -0.024 
Apr20 110 11.23 0.017 
Apr30 120 14.50 0.046 
May 10 130 17.42 0.060 
May 20 140 19.82 0.059 
May 30 150 21.66 0.043 
Jun9 160 22.86 0.015 
Jun 19 170 23.43 -0.019 

Declin. E. T. 
Date Day Degree hours 
Jun 29 180 23.26 -0.055 
JuI 9 190 22.46 -0.085 
J u ~  19 200 20.97 -0.103 
Ju129 210 18.96 -0.107 
Aug 8 220 16.39 -0.094 
Aug 18 230 13.35 -0.065 
Aug28 240 9.97 -0.022 
Sep 7 250 6.36 0.031 
Sep 17 260 2.58 0.089 
Sep27 270 -1.32 0.147 
Oct 7 280 -5.21 0.201 
Oct 17 290 -9.00 0.243 
Oct27 300 -12.55 0.268 
Nov6 310 -15.76 0.273 
Nov 16 320 -18.56 0.255 
NOV 26 330 -20.80 0.213 
Dec 6 340 -22.40 0.151 
Dec 16 350 -23.26 0.075 
Dec 26 360 -23.38 -0.007 

but this sometimes varies depending on political boundaries. An atlas 
can be checked to get both the standard meridian and the longitude. The 
equation of time is a 15 to 20 minute correction which depends on calendar 
day. It can be calculated from 

ET = -104.7 sin f+596.2 sin2 f f 4 . 3  sin 3 f -12.7 sin4 f -429.3 cos f -2.0 cos 2 f+l9.3 cos 3 f 
3600 

(1 1.4) 
where f = 279.575 + 0.98565, in degrees. Some values for ET are also 
given in Table 1 1.1. 

The azimuth angle of the sun can be calculated from 

-(sin 6 - cos I) sin 4) 
cos AZ = (1 1.5) 

cos 4 sin I) 

where @ is the zenith angle, calculated from Eq. (1 1.1); and AZ is in 
degrees, measured with respect to due south, increasing in the counter 
clockwise direction so 90" is east.Afternoon azimuth angles can be cal- 
culated by taking 360" minus the AZ calculated from Eq. (11.5), or by 
multiplying the result of Eq. (11.5) by -1; these two cases being only 
two of many possibilities for labeling the azimuth. Using Eqs. (11.1) 
and (11.5) the sun paths can be plotted for different latitudes, times of 
the year, and times of the day. Figure 11.1 shows some examples for 
latitudes of 0,25,50, and 75". Note that the angle scale in Fig. 11.1 is 
different from that calculated from Eq. (11.5). Several azimuth-scale 
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FIGURE 11-1. Sun tracks at declination angles of -23.5, -10, 0, 10, and 23.5" 
for four different latitudes. Zenith angle grids are the concentric circles. Azimuth 
angles are shown around the outer circle. North is 0°, east is 90". Large dots are 
at one hour time increments. 

labeling conventions exist, such as mathematical, astronomical or geo- 
graphical, so that the reader should be prepared to convert between 
various labeling conventions. 

Equation (1 1.1) can be rearranged to solve for daylength. It works best 
to write the equation in terms of the half daylength, h,, which is the time 
(in degrees) from sunrise to solar noon. The half daylength is 

cos @ - sin4 sin6 
h, = cos-I 

cos 4 cos 6 

where cos @ = 0 for a geometric sunset (no atmospheric refraction) and 
a small negative value when twilight is considered. The time of sunrise 
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(t,) is the time of solar noon (to) minus the half daylength divided by 15 
(to convert degrees to hours): 

and daylength in hours is twice the half daylength in degrees divided by 
1 5 " h  (2hs/ 15). Therefore, a 12-hour daylength corresponds to h, = 
90". 

To find the time of actual sunrise, @ in Eq. (1 1.5) is set to 90". Bi- 
ologically sigmlicant times, especially for flowering and insect activity, 
begin in twilight hours just before sunrise and extend to just after sunset. 
Beginning and ending times for "civil twilight" are sometimes used to 
define these times of activity. Civil twilight is defined as beginning and 
ending when the sun is 6" below the horizon, so @ = 96". 

Example 11.1. Find the sun zenith angle for Pullman, WA at 1 O:45 PDT 
on June 30. Also find the time of first twilight and the daylength. 

Solution. Convert the time of observation to standard time by subtract- 
ing one hour and convert minutes to decimal hours, so t = 9.75 hrs. 
The calendar day for June 30 is J = 181. Pullman latitude is 46.77", 
and longitude is 117.2". The standard meridian is 120". The local merid- 
ian is therefore 2.8" east of the standard meridian, so LC = 2.8" + 
15"/hr = 0.19 hrs. From Eq. (11.4) or Table 11.1, ET = -0.06 hrs. 
Equation (1 1.3) then gives to = 12 - 0.19 - (-0.06) = 11.87 hrs. 
Declination, from Table 11.1 or Eq. (1 1.2) is 23.18'. Substituting these 
values into Eq. (1 1.1) gives 

The result is 34.9". The half daylength (including twilight), from 
Eq (1 l.6), is 

Converting to hours gives 128" x = 8.56 hrs. The time of first 
twilight is 11.87 - 8.56 = 3.31 hrs (solar time). The daylength is 2 x 
8.56 = 17.1 hrs.The timeofsunriseinPDTis3.31 hrs+ LC + ET + 
1 hr = 4.44hrs (PDT). 

11.2 Estimating Direct and Diffuse Short-wave 
lrradiance 

Computation of the solar or shortwave component of the radiant energy 
budget of an organism requires estimates of flux densities for at least 
three radiation streams: direct irradiance on a surface perpendicular to 
the beam (S,), diffise sky irradiance on a horizontal plane (Sd), and 
reflected radiation from the ground (S,). In addition to these, sometimes 
the beam irradiance on a horizontal surface Sb and the total (beam plus 
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diffuse) irradiance of a horizontal surface S, need to be known. St is 
sometimes reffered to as the global irradiance. These last two quantities 
are related to the f is t  by 

Sb = Sp  cos $ (1 1.8) 

and 

St = Sb + Sd (1 1.9) 

where $ is the solar zenith angle. 
Reflected radiation is the product of the average surface reflectance 

for the solar waveband and the total shortwave irradiance of the surface: 

The shortwave surface reflectance is called albedo. Typical albedos for 
several surfaces are given in Table 11.2. These values are influenced by 
amount of cover, color of soil or vegetation, and sun elevation angle, so 
the values in the table should be regarded as approximate. Tall canopies 
and water surfaces have reflectances that depend strongly on solar zenith 
angle. The values in Table 11.2 are for small (midday) zenith angles. 

Though a number of models are available for estimating clear sky S p  
and Sd with considerable accuracy (McCullough and Porter, 197 l), they 
require data that are not generally available to the ecologist without special 
measurements, and are quite complicated to use. We use a simpler model 
based on Liu and Jordan (1960). We expect Sp  to be a function of the 
distance the solar beam travels through the atmosphere, the transmittance 
of the atmosphere, and the incident flux density. A simple expression 
combining these factors is: 

where Sp ,  is the extraterrestrial flux density in the waveband of interest, 
normal to the solar beam. The term t is the atmospheric transmittance 
and m is the optical air mass number, or the ratio of slant path length 

TABLE 11.2. Shortwave reflectivity (albedo) of soils and 
vegetation canopies. 

Surface 
Grass 
Wheat 
Maize 
Beets 
Potato 
Deciduous forest 
Coniferous forest 
Tundra 
Steppe 

Reflectivity 
0.24-0.26 
0.16-0.26 
0.18-0.22 
0.18 
0.19 
0.10-0.20 
O.OSO.15 
0.15-0.20 
0.20 

Surface 
Snow, fresh 
Snow, old 
Soil, wet dark 
Soil, dry dark 
Soil, wet light 
Soil, dry light 
Sand, dry white 
Road, blacktop 
Urban area (average) 

Reflectivity 
0.75-0.95 
0.40-0.70 
0.08 
0.13 
0.10 
0.18 
0.35 
0.14 
0.15 
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through the atmosphere to zenith path length. For zenith angles less than 
SO0, refraction effects in the atmosphere are negligible, and m is given 
by: 

m = Pa 
101.3 cos + ' 

The ratio pa/lO1 .3 is atmospheric pressure at the observation site di- 
vided by sea level atmospheric pressure, and corrects for altitude effects. 
Equation (3.7) can be used to calculate this ratio. It can be shown that 
Eq. (1 1.11) is mathematically equivalent to Beer's law (Eq. (10.4)). 

Liu and Jordan (1960) measured t on clear days, and found values 
ranging from 0.75 to around 0.45 at two sites. When t is lower than about 
0.4, one would consider the sky to be overcast. Gates (1980) suggests 
values of t between 0.6 and 0.7 to be typical of clear sky conditions. 
Values on the clearest days would be around 0.75. 

Of the radiation that starts through the atmosphere, part reaches the 
ground as beam radiation (Eq. (1 1.1 I)), part is absorbed by the atmo- 
sphere, part is scattered back to space, and part is scattered downward 
toward the ground. The down scattered part is called the sky diffuse ra- 
diation. The actual amount of diffuse radiation reaching the ground is 
difficult to compute because it depends, in part, on the albedo of the 
ground. All else being equal, the sky is brighter when the ground is snow 
covered than it is when the ground is covered with dense, dark vegeta- 
tion. Without getting into these complications, approximate values can 
be computed for sky diffuse radiation on clear days using an empirical 
equation adapted from Liu and Jordan (1960): 

The airmass factor partially compensates for the effect of the cosine factor 
in Eq. (1 1.13), so that the diffuse radiation remains relatively constant 
throughout clear days. In fact, Peterson and Dirmhirn (1981) found that 
the ratio Sd/Sp is nearly constant on clear days. Figure 11.2 shows the 
beam, diffuse, and total radiation computed using Eqs. (1 1.1 1) and (1 1.13) 
for a clear atmosphere. Figure 11.3 shows these same radiation streams, 
but for a turbid atmosphere. Note that as the dust and haze increase, beam 
radiation is decreased and diffuse radiation increases. 

11.3 Solar Radiation under Clouds 

When clouds obscure the sun, Sd = St, since there is no beam radiation 
component. Empirical transmission coefficients have been worked out for 
various cloud types and used to determine the shortwave irradiance under 
clouds. Total shortwave irradiance is shown in Fig. 11.4 as a function of 
solar elevation angle for various cloud types. Clearly the presence of some 
kinds of clouds can cause widely fluctuating irradiance so the curves in 
Figure 1 1.4 are averages. 



Radiation Fluxes in Natural Environments 

Solar Zenith Angle (degrees) 

FIGURE 11.2. Beam (Sb),  diffuse (Sd) ,  and total solar radiation (St) as a function 
of zenith angle for a very clear sky. 
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FIGURE 11.3. Similar to Fig. 11.2, but for turbid or polluted air. 
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FIGURE 1 1.4. Solar irradiance under cloud cover for various cloud types and solar 
elevation angles (data from List, 197 1). 

Example 11.2. Find all components of the solar radiation over a grass 
surface on a clear day when the solar zenith angle is 30" and the altitude 
is 800 m. 

Solution. The cosine of the zenith angle is needed in several places; it 
is cos(30) = 0.866. The atmospheric pressure is (Eq. (3.7)). 

p, = 101 exp - = 91.6 kPa. ( z: ) 
The airmass number is (Eq. 1 1.12) 

The transmittance, tm is needed to compute both Sp and Sd. Assuming 
a value of 0.7 for t gives 0.7l.O' = 0.69. Now, using Eq. (1 1.11), S, = 
1360 W m-2 x 0.69 = 938 W mV2. Using Eq. (11.13), Sd = 0.3 x 
1360 W m-2 x 0.866 x (1 - 0.69) = 110 W m-'. Using Eqs. 11.8 
and 1 1.9, St = 938 W m-2 x 0.866 + 110 = 922 W m-2. Finally, the 
reflected radiation is obtained from Eq. (1 1.10) using the average grass 
albedo from Table 11.2: S, = 0.26 x 922 W m-2 = 240 W m-2. 

11.4 Radiation Balance 

Part of the radiation incident on a leaf, an animal, a crop canopy, or a 
soil surface is absorbed at the surface. This energy can warm the surface 
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or be dissipated to the environment by conduction, evaporation, or radia- 
tion. Since we are interested in the energy exchange between organisms 
and their surroundings, we need to be able to compute the net amount of 
radiant energy absorbed by the surface, and the amount emitted by the sur- 
face. The amount emitted is easily computedusing the Stefan-Boltzmann 
equation from Ch. 10. The amount absorbed is computed from: 

where cw, and a~ are the absorptivities in the solar and thermal wave- 
bands, S,, Sd, and S, are the components of solar radiation, computed 
from Eqs. (1 1.1 I), (1 1.13), and (1 1. lo), La and L, are the long-wave 
flux densities from the atmosphere and the ground (computed using the 
StefmBoltzmann equation from Ch. lo), and F,, Fd, F,, Fa, and F, 
are view factors between the surface and the various sources of radia- 
tion; namely beam, diffuse, and reflected solar radiation and atmospheric 
and ground thermal radiation. The net flux density of radiant energy at a 
surface, often called net radiation is computed from: 

where E, is the emissivity of the surface, T, is the surface temperature (in 
kelvins), and F, is the view factor between the entire surface of the object 
and the complete sphere of view. For convex surfaces, F, = 1 except for 
the unusual case of an animal lying on the ground so that only a portion 
of its total surface area is emitting radiation. For complex surface shapes, 
F, may be less than one because some of the surface "views" other parts 
of the surface of the same object or animal. Equation (1 1.15) expresses 
the radiation balance at the surface, and Eq. (1 1.14) gives the information 
needed to compute the radiation balance. In order to make the computation 
shown in Eq. (1 1.14), values are needed for the absorptivities and view 
factors. 

11.5 Absorptivities for Thermal and 
Solar Radiation 

According to Kirchhoff's law, given in Ch. 10, the absorptivity in a given 
waveband is equal to the emissivity in that waveband. The longwave 
absorptivity needed for Eq. (1 1.14) is therefore equal to the emissivity of 
the surface. In Ch. 10 we give a typical value for emissivities of natural 
surfaces of around 0.97. Table 11.3 gives measured values for leaves, 
animals, and various other surfaces. Note that, except for metal surfaces, 
the emissivities are around the 0.97 value used in Ch. 10. We therefore 
continue to use this value for emissivities of natural surfaces and for ab- 
sorptivities of leaves and animals. Obviously a much lower value should 
be used for a metal surface. Note that a polished metal coating on a sur- 
face (gold, silver, or aluminum) can almost eliminate both the absorption 
and the emission of thermal radiation. This fact is used in the design of 
Thermos bottles. By silvering the glass surfaces of the bottle the emis- 
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TABLE 11.3. Long-wave or thermal emissivities (and 
absorptivities) for leaves, animals, and other surfaces 

Surface 

maize leaf 
tobacco leaf 
bean leaf 
cotton leaf 
sugar cane leaf 
poplar leaf 
cactus 
polished chrome 
bright aluminum 
foil 

Emissivity Surface 

human skin 
snowshoe hare 
caribou 
gray wolf 
gray squirrel 
window glass 
concrete 
soil 
water 

Emissivity 

sivity is reduced from above 0.9 to below 0.05, thus almost eliminating 
radiative exchange between the inner and outer bottle surfaces. 

In Ch. 10 we discuss the computation of absorptivities for radiation 
and indicate that the absorptivity for a particular source of radiation is 
the normalized integral of spectral absorptivity weighted by the spectral 
irradiance of the source. Figure 11.5 shows the spectral absorptivities of 
some leaf and animal surfaces in the shortwave region of the spectrum. 
While all of the surfaces show variation of absorptivity with wavelength, 
the leaf absorptivity changes dramatically between the visible and near 
infrared portions of the spectrum. In the visible, most of the radiation is 
absorbed, and is used to carry on photosynthesis. Absorption is somewhat 
lower in the green (around 0.55 pm) part of the spectrum, resulting in 

W a v e l e n g t h  (prn)  

FIGURE 1 1.5. Spectral absorptivity of leaf, fur, feather, and skin surfaces over part 
of the solar spectrum (data from Gates, 1980, and Hall et al., 1992). 
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TABLE 11.4. Shortwave absorptivities of leaves and 
animals (from Gates, 1980). 

Leaves 
silver maple 
american beach 
sunflower 
cottonwood 
cottonwood (yellow) 
Birds 
Stellar's jay 
sparrow (dorsal) 
quail (dorsal) 
quail egg 
white swan 

Mammals 
bison 
wolf 
cat (white) 
bobcat 
Reptiles 
alligator 
lizard 
Humans 
Eurasian 
Negroid 

the characteristic green color of vegetation, but overall, approximately 
85 percent of the incident visible radiation is absorbed while about 15 
percent of the NIR is absorbed. The NIR wavelengths are not useful for 
biochemical processes and are largely reflected or transmitted by the leaf. 

Integration of data like that shown in Fig. 1 1.5, with weighting accord- 
ing to the solar spectrum (Fig. 10.5), results in the shortwave absorptivitiy 
for solar radiation. Table 11.2 shows solar reflectivities for various types 
of ground cover. Since all of the incident radiation is either reflected or ab- 
sorbed, the absorptivity of these surfaces can be computed as as = 1 - p, 
where ps comes from Table 1 1.2. Representative animal and leaf absorp- 
tivities are given in Table 11.4. Gates (1980) gives a more comprehensive 
table. 

It appears that shortwave absorptivities of leaves are around 0.5, so 
about half of the incident solar radiation is absorbed. Animals have a wide 
range of absorptivities ranging from 0.18 for eggs to around 0.9 for black 
or dark brown coats. Even white coats like the white swan and white cat 
absorb around 40 percent of the incident radiation. Comparing the solar 
absorptivities of leaves (- 0.5) from Table 11.4 with canopies (- 0.8) 
from Table 11.2 reveals a surprising difference. The higher absorptivity of 
canopies arises because of multiple reflections among leaves in a canopy 
and depends on the architecture of the canopy. 

11.6 View Factors 
The final thing needed for finding the radiation balance is a knowledge 
of how to compute the view factors in Eq. (1 1.14). "View factor" is a 
commonly used term in engineering heat transfer and refers to the fraction 
of radiation leaving one object of some shape that is intercepted by another 
object of similar or different shape. Thus if an object A is radiating and an 
object B is receiving some of that radiation, then the view factor would be 
expressed as FA-B. This view factor is generally different from the view 



View Factors 179 

factor for radiation leaving object B and received by object A - FB-*. In 
a simple conceptual model of outdoor radiation the sources would be the 
sun, sky, and ground. For our purposes, a diffuse source of radiation like 
the sky can be treated as a hemispherically-shaped object of exceedingly 
large radius. In engineering, view factors are computed between objects; 
whereas in environmental biophysics the interest is usually in view factors 
between objects and sources of radiation. By considering the example of 
a small sphere located inside of a large sphere, these two applications of 
view factors can be related to each other. The view factor from the small 
sphere to the large sphere is 1.0, because all the radiation leaving the 
small sphere is received by the large sphere. Alternatively, all the view 
of the small sphere is entirely occupied by the large sphere because the 
small sphere cannot view any of itself. In contrast, the view factor from 
the large sphere to the small sphere is given by the ratio of the sphere 
areas (Asmll/Alarge) SO that all the radiation leaving the large sphere is 
not received by the small sphere but some is received by the large sphere 
itself. This fraction of radiation leaving the large sphere that impinges 
on other areas of the same large sphere is the view factor between the 
large sphere and itself (1 - Asmll/Alarge). AS the small sphere, which 
is inside the large sphere, becomes smaller and smaller, the view factor 
from the large sphere to the small sphere becomes small; but the view 
factor between the small sphere and the large sphere remains 1.0. In 
environmental biophysics we are usually interested in the view factor 
between an object, such as the interior sphere in the example above which 
might be a bird flying, and the imaginary sphere surrounding that object 
representing the source of radiation, such as the sky and ground. Usually 
the sphere of view surrounding the object has several sources of radiation 
such as sky or ground, so the view of the object is divided up into the 
various components that represent the various sources of radiation; but 
the sum of all these view factors must always be 1 .O. If the exterior (large) 
sphere in the example above is divided into two hemispheres, the view 
factor between the interior (small) sphere and the exterior (large) upper 
hemisphere is 0.5. Likewise the view factor between the interior (small) 
sphere and the lower exterior (large) hemisphere is 0.5. If the interior 
(small) sphere is replaced by an interior (small) cylinder or thin flat plate, 
the view factor between this cylinder or thin flat plate and either exterior 
hemisphere also is 0.5. 

Frequently the thin flat plate case leads to the greatest confusion 
because the area of thin flat plates is almost always specified by the 
"one-sided" area or "silhouette" area by convention. You might normally 
consider a 3 in. x 5 in. card to have an area of 15 in? because you tend to 
use the convention of one-sided area. In this book, however, we consider 
such a card to have an area of 30 in.2 because we always use the area of 
the total surface (top and bottom). Because we generally are interested 
in the view factor between an object and radiation originating from some 
portion of a sphere, we omit the initial subscript denoting the object so 
that a view factor between a leaf and the sky is given by Fsb not &f-sb. 
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Although the sky usually is considered to be a hemisphere, it need not be 
so; for example, the view factor between a leaf and the sky may be less 
than one for the bottom of a mountain gorge. 

In engineering, view factors usually are only used for diffise radiation; 
however, in environmental biophysics we want to use them for beam and 
diffise radiation so we expand the definition somewhat. Here we define 
the view factor as the average flux density over the entire surface of 
some object of interest divided by the flux density on a flat absorbing 
surface facing the source. The surfaces of interest to us are soil surfaces, 
plant canopies, individual leaves, and animals. When we say average flux 
density here, we mean the number of Watts of energy absorbed, averaged 
over the entire surface area of the object in question. For beam radiation 
this average ratio is easily obtained (at least in principle). It is equal to 
the ratio of the projected area in the direction of the solar beam (A,) 
to the total surface area of the object (A). You might picture holding a 
piece of paper perpendicular to the beam of solar radiation and tracing 
the shadow of the object (animal, leaf, etc.) on the paper. The area of the 
shadow is the A,. Thus for a flat horizontal leaf with the sun at zenith 
angle @, F, = 0.5 cos + because only one side of the leaf faces the sun. 
View factors for the sky and ground are for diffise radiation and was 
discussed earlier. If the source of radiation (sky or ground) is assumed to 
be isotropic (same intensity in all directions), then determining the view 
factor essentially means that each point on the sky or ground is considered 
as a source and each point on the object as a receiver. Each portion of the 
source is weighted by the solid angle it subtends with each portion of the 
receiver, each portion of the receiver is weighted by the fraction of the 
entire receiver area it occupies, and the incident radiation is multiplied 
by the cosine of the angle between the received-radiation direction and 
a normal to the surface at the point of absorption. Integrating over the 
entire solid angle of the source and area of the receiver gives the view 
factor. For a flat horizontal plate, a sphere, or a cylinder under a diffise 
sky and over a diffusely reflecting soil surface, the view factor between 
the object (plate, sphere, or cylinder) and the sky hemisphere is 0.5 and 
the view factor between the object and the ground is 0.5. Of course this 
means that the view factor between the object and its entire view is 1 .O. 
If the object were at the bottom of a deep canyon, then the view factor 
between the object and the sky might be 0.4 and between the object and 
the ground be 0.6 because some of the view of the top of the object is 
occupied by canyon walls. 

Now, we specifically consider view factors for soils and plant canopies, 
animals and individual leaves. For a soil surface or a plant canopy F,, = 
cos 8, Fd = Fa = F, = 1, and F, = F, = 0, where 8 is the angle 
between the solar beam and a normal to the plane of the soil or canopy. 
For a horizontal surface 8 = @, the zenith angle. When the surface has 
slope, 8 can be computed from 

cos 8 = cos y cos @ + sin y sin @ cos(AZ - AS) (11.16) 
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where y is the inclination angle of the surface, I,+ is the zenith angle of 
the sun, AZ is the azimuth angle of the sun with respect to due south, 
and AS is the aspect angle (angle between south and the projection onto 
the horizontal of the normal to the inclined surface) of the surface. If the 
surface is sloped, Fd and Fa usually are less than 1.0; typically Fd = 
Fa = (1 + cos y)/2. 

It may seem strange that Fr and F, are zero for a plant canopy since 
the leaves do receive reflected and emitted radiation from the soil and 
from lower layers in the canopy. The important thing to remember here 
is that we are not trying to deal with the details of leaf processes when 
we compute the absorption of radiation by a canopy. We imagine that we 
are far enough from the canopy so that we can treat it as a single, flat 
surface which absorbs and emits radiation. Thus we consider the canopy 
to be an object with only one side; a practical impossibility, but useful 
and consistent conceptually. Later we deal with the details of radiative 
exchange by canopy elements. 

As stated earlier, Fp for an animal is just equal to APIA, the ratio 
of projected area perpendicular to the solar beam to total animal area. 
Figure 11.6 shows this ratio for several objects which approximate the 
shapes of animals. To use Fig. 11.6, one simply determines the angle 
between the longitudinal axis ofthe animal and the solar beam, the general 
shape of the animal, and the ratio of length to diameter. It appears that 
the view factor should fall in the range 0.1 to 0.3. A sphere has a view 
factor for beam radiation of 0.25. 

If the effect of shadows are ignored, the diffuse view factors for an 
animal suspended above the ground hemisphere and below a sky hemi- 
sphere are Fd = Fr = Fa = F, = 0.5 and F, = 1. Both the sky and 
the ground "see" more than half the body surface area of the animal, but 
the cosine weighting results in the view factor being 0.5. If the animal 
is lying on the ground, a large fraction of its surface is not accessible to 
radiation, and F,, Fr and F, must be adjusted accordingly. 

The view factors for a single leaf are similar to those for an animal. 
The view factors for a leaf suspended over the ground and under the sky 
hemisphere are F, = 0.5 cose, Fd = Fr = F, = Fg = 0.5, and 
F, = 1. Equation (1 1.16) is used to compute 8. 

Example 11.3. Find the net radiation for the grass surface in Exam- 
ple 11.2 if the air temperature is 30" C and the grass temperature is 
35" C. 

Solution. From Example 1 1.2, Sp = 938 W m-2, Sd = 1 10 W mP2, 
and Sr = 240 W m-2. From Table A.3, the black body emittances for 
30" C and 35" C are 479 and 5 11 W m-2, and the clear sky emissivity 
at Ta = 30" C is 0.85. The sky thermal radiant emittance is therefore 
La = 0.85 x 479 = 407 W m-2. The ground thermal radiant emittance 
is E,OT; = 0.97 x 5 1 1 = 496 W m-2. The shortwave absorbtivity is 
equal to 1 - p,. For grass p, = 0.26 (Example 11.2) so a, = 0.74. 
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FIGURE 11.6. Ratios of shadow area on a surface perpendicular to the solar beam 
to total surface area for three simulated animal shapes. The angle indicated is the 
angle between the solar beam and the longitudinal axis of the solid. 
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Now, using Eq. (1 l.l4), with Fp = cos I) = cos 30 = 0.866 (the sun 
zenith angle was given as 30"); Fd = Fa = 1, and F, = F, = 0, 
gives Rabs = 0.74 x (0.866 x 938 w m-2 + 1 x 110 w m-2) + 0.97 x 
(1 x 407 W m-2) = 1077 W m-2. The net radiation is ( E ~ .  (1 1.15)): 
R,, = 1077 W m-2 - 496 W m-2 = 581 W m-2. 

Example 11.4. If a sparrow were standing on the grass, what would its 
Rabs be? 

Solution. From Table 11.4, the sparrow absorptivity is 0.75. Consulting 
Fig. 1 1.6 it can be seen that the value of Fp could range from about 0.15 
to 0.35 depending on the orientation of the bird to the solar beam. We 
calculate the absorbed radiation for both extreme values, using the values 
from Example 1 1.3. 
Smallest Rabs: 

Largest Rabs: 

Clearly, the bird has access to a wide range of absorbed radiation 
environments, just by choosing its orientation with respect to the sun. 

Example 11.5. If a single flat leaf were suspended horizontally over the 
same grass surface, what would its absorbed radiation be? 

Solution. From Table 11.4, the absorptivity for the leaf is around 0.5. 
Since the leaf is horizontal, Fp = 0.5 x cos I) = 0.433. All of the other 
view factors are 0.5, and F, = 1. The absorbed radiation is therefore: 
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Problems 

1 1.1. Compare Rabs for an animal under a clear night sky and a completely 
overcast cloudy night sky. Assume T, = Tg = 20" C. 

11.2. Compute Rabs for your hand suspended horizontally over a dry 
soil surface on a clear day. Assume T, = 25" C, T, = 45" C, yf = 40°, 
and q = 0.65. Estimate values not given and state assumption 
for making estimates Estimate the total watts absorbed by your 
hand. 

11.3. Give all components of the radiant energy budget, and compute the 
net radiation for a bare soil surface under a clear sky on April 10 at 
1100 hrs. solar time. Latitude is 37" and elevation is 1200 m. Air 
temperature is 18" C and soil surface temperature is 22" C. 

1 1.4. Make the same computations as in problem 1 1.3, but for an overcast 
sky. 

11.5. Find the elevation, zenith, and azimuth angles of the sun at 600 hrs 
(solar time) on June 2 1, at a latitude of 48" and longitude of 95". 

11.6. Find the daylength and time of sunrise and sunset using the data in 
problem 1 1.5. 

11.7. Estimate the duration of civil twilight in hours for Example 1 1.1.  
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The principles discussed thus far become more meaningful as they are 
applied to problems in nature. The first problem considered is that of de- 
scribing the fitness of the physical environment for survival of an animal 
whose requirements we specify. Survival of the animal can depend on 
many factors; we consider only those related to maintaining body tem- 
perature within acceptable limits and those related to maintaining proper 
body water status. Even these aspects are only discussed to a limited 
extent. For example, maintenance of body temperature in endotherms 
(animals which maintain body temperature through internal metabolic 
heat production) involves production of metabolic heat. Stored chemical 
energy from the animal's food is used to produce the heat, so availability 
of food in the environment could be construed as part of the animal's 
physical environment. Food availability does not enter into our discus- 
sions in this way, but we do compute the amount of food an endotherm 
needs in order to maintain constant body temperature. Food requirements 
are of interest to those modeling ecosystems as well as those managing 
range lands for wild or domestic animals. 

12.1 The Energy Budget Concept 

The question of whether or not an animal can maintain its body tempera- 
ture within acceptable limits can be stated in another way which makes it 
more amenable to analysis. It can be asked whether heat loss can be bal- 
anced by heat input and production at the required body temperature. We 
are well prepared to describe heat inputs and heat losses for a system, so 
the problem is easily solved, at least in principle. An equation stating that 
heat inputs minus heat losses equals heat storage for a system is called 
an energy budget equation. As an example of an energy budget, consider 
a representative unit area of the surface of an animal that is exposed to 
the atmosphere. The energy budget of this surface is the sum of the heat 
inputs and losses. Thus: 
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where Rabs is the flux density of absorbed radiation, Lo, is the flux density 
of outgoing, emitted radiation from the surface, M is the rate of metabolic 
heat production per unit surface area, hE  is the latent heat loss from 
evaporation of water, H is the rate of sensible heat loss, G is the rate of 
heat loss to the substrate by conduction, and q is the rate of heat storage 
in the animal per unit surface area. 

Initially, we concern ourselves only with steady-state conditions for 
which the heat storage rate q is zero. The rate of heat storage is equal to 
the heat capacity of the animal multiplied by the rate of change of body 
temperature, so if the heat storage rate is zero, the rate of change of body 
temperature must also be zero. For simplicity, we also assume G = 0. 

The emitted radiation [Lo, = E,~T;] and sensible heat [H = 
cpgH(T, - T,)] terms both involve the surface temperature of the an- 
imal. It is always possible to set a value for surface temperature which 
balances Eq. (12. I), but that temperature may be too high or too low for 
the animal to remain alive. If body temperature and metabolic rate are 
specified, then Eq. (12.1) can be used to find environments that are ener- 
getically acceptable (Rabs and Ta that will balance the energy budget). On 
the other hand, we could measure or estimate Rabs, Ta, and Tb and com- 
pute M. Knowing M, we can specify food needs for thermoregulation in 
a given climate. 

Equation (12.1) is not very useful as it stands because of its strong 
dependence on surface temperature, a quantity that is hard to estimate, 
or even to measure. Body temperature, at least for endotherms, is easily 
estimated since it is under tight metabolic control. This fact can be used 
to eliminate surface temperature from the energy balance equation. Fig- 
ure 12.1 shows the assumptions we make about the source (M) and sink 
(hE) of heat, and the resistances to heat flow from the body core to the 
environment. In a nonsweating animal, much of the latent heat loss is 
through breathing, or panting, and the remainder is from beneath the 
coat, which generally has a much higher resistance than the tissues. It is 
therefore justified to lump latent heat loss with metabolic heat production 
and place them at the body core. Later we do a more complete analysis 
which does not restrict the location of the latent heat loss. It is often useful 
to combine coat and tissue conductance into a whole body conductance: 

Since all of the heat from the body core flows through g ~ b ,  we can 
write 

where c, is the specific heat of air. Equation (12.1) can now be rewritten 
explicitly showing the surface temperature dependence: 
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FIGURE 12.1. Diagram of heat production and loss in an non-sweating animal. 

By combining Eq. (12.3) and Eq. (12.4), we can eliminate the sur- 
face temperature and have an energy balance equation in terms of body 
temperature and whole body conductance. 

Before proceeding with the derivation of the energy balance equation, 
we briefly consider an algebraic manipulation which linearizes the surface 
emittance term, where surface temperature is raised to the fourth power. 
T s  can be written as T ,  + AT, where AT = Ts - Ta. Now the binomial 
expansion is used to obtain: 

(T ,  +  AT)^ = T: + ~ T ~ A T  + ~ T : A T ~  + ~ T , A T ~  +  AT^. (12.5) 

A calculator can be used to verify that the terms in Eq. (12.5) with powers 
of AT greater than one are negligibly small for values of AT up to tens 
of degrees. Therefore T: can be approximated as T: + ~ T ~ A T .  The 
approximation is almost exact if, instead of using the cube of the air 
temperature, the cubed average of surface and air temperature is used. 

Using this approximation, the surface emittance term in Eq. (12.4) can 
be written as: 

Here we have defined a radiative conductance. For an animal in an en- 
closure the net exchange of thermal radiation between the walls of the 
enclosure and the animal is directly proportional to the difference be- 
tween wall temperature and animal surface temperature and also directly 
proportional to the radiative conductance. This conductance therefore 
allows the combination of thermal radiative exchange with convective 
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heat exchange in a convenient way and also linearizes the energy balance 
equation. From Eq. (12.6) it is seen that 

Values for gr (with E, set to 1) are tabulated in Table A.3 for temperatures 
between -5 and 45°C. 

With these changes and substitutions, the energy balance equation now 
becomes: 

where 

Finally, making use of Eq. (12.3) to eliminate surface temperature the 
energy budget equation for an animal is obtained in terms of body 
temperature: 

One final simplification allows the energy balance equation to be writ- 
ten in a particularly useful form. Animal metabolism is often studied 
inside chambers where air and wall temperatures are equal, where the 
flux density of shortwave radiation is negligible, and where wall emis- 
sivities are high. Such a chamber could be called a blackbody enclosure. 
If the radiation balance equation (Eq. (1 1.14)) is looked at for an animal 
in such an enclosure, it is seen that Rabs = E , O T ~ .  We call the temper- 
ature of such a blackbody enclosure the operative temperature, with the 
symbol Te. Later we relate the operative temperature to outdoor radiation 
and temperature conditions, but for now the use of operative temperature 
allows us to eliminate radiation terms from the energy balance equation. 
The operative temperature form of Eq. (12. lo), with some rearrangement 
of terms is: 

The second equation, in resistance form, is the more familiar form, but 
we continue to use conductances here. For now Te can be thought of as 
the air temperature of a normal room in which the air and wall tempera- 
tures are equal. Equation (12.1 1) simply shows the relationship between 
temperature, resistance, metabolic rate, and latent heat loss for an animal. 
It is extremely useful for analyzing animal-environment interaction, but 
before going farther we need to consider some aspects of animal biology 
to get values for M, h E, and g ~ b .  
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12.2 Metabolism 

The energy budget equation requires metabolic rate in terms of average 
energy supplied to the animal's surface per unit area. Physiologists gen- 
erally measure metabolic rates per unit mass of animal. Control of body 
temperature for homeotherms and maintenance of body functions in all 
animals requires a minimal or basal metabolic rate. This basal rate (Watts) 
can be approximated for a wide variety of animals by the equation: 

where m is the animal's mass (kg) and C is a constant between three and 
five for endotherms and around five percent of this value for poikilotherms 
at 20°C. Figure 12.2 shows this relationship for a wide range of animal 
sizes. 

An approximate relation between surface area (m2) and mass (kg) is: 

The uncertainty in the exponents of Eqs. (12.12) and (12.13) are large 
enough that, for many practical purposes, they may be taken as being 
the same. Thus the basal metabolic rate per unit animal surface area, 
M(= BIA) ,  is relatively independent of animal size. Typical values for 
Mb (the basal metabolic rate per unit area) in endotherms range from 30 

.O1 .1 1 10 100 1000 10000 100000 
Body Mass (kg) 

FIGURE 12.2. Relation between body mass and basal metabolic rate of poikilo- 
thems at 20 C, basal metabolic rate of endothems at 39 C, and maximum aerobic 
metabolic rate. 
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Metabolic rate increases with animal activity. This can be accounted 
for in the energy budget in one of two ways. If about 30 percent efficiency 
is assumed for conversion of chemical energy to work in animals, then 
for each unit of work done there will be about two units of heat produced. 
If it is known how much work is done, the metabolic production of heat 
can be calculated. The other method is somewhat simpler, As a rule of 
thumb, the maximum aerobic metabolic rate an animal can sustain can be 
assumed to be about ten times the basal rate (Fig. 12.2). If the animal's 
activity can be estimated as a percent of maximum (say from oxygen 
consumption measurements or running speed compared to maximum) 
the metabolic contribution can be estimated from: 

where a! is the animal's activity and a ! ~  is the maximum sustainable 
activity. If Mb is 50 W m-2, M will vary between 50 and 500 W m-2. 

12.3 Latent Heat Exchange 

Evaporation of water from the respiratory tract and from the skin result in 
latent heat loss from the animal. The total latent heat loss, needed for the 
energy budget equations, is the sum of the respiratory and skin latent heat 
losses. Respiratory loss is a direct result of the air exchange for breathing. 
Skin water loss was already treated in detail in Chs. 6 and 7. 

In respiratory evaporation, air is breathed in at ambient vapor pressure 
and breathed out at the saturation vapor corresponding to the temperature 
of the nasal passages. In most species the nasal passages are maintained 
at about body temperature. Since increased metabolic heat production 
results in increased oxygen consumption, and this increases breathing 
rate, it would seem reasonable to compute respiratory latent heat loss as 
some fixed fraction of metabolic heat production. Taking into account the 
concentrations of inhaled and exhaled oxygen and water vapor, and the 
heats of combustion and evaporation we can write: 

M h  (e, - ei)  
hEr = 

rpa ( c o i  - c o e )  

where e, and ei are expired and inspired vapor pressure, C,, and Coi are the 
corresponding oxygen concentrations, h is the latent heat of vaporization 
for water (44 kJImol), p, is the atmospheric pressure, and r is the heat 
produced per mole of oxygen consumed (480 Wmol). The difference 
in oxygen concentration between inhaled and exhaled air is around five 
percent or 0.05 mol/mol. To get an idea of the magnitude of respiratory 
latent heat loss, assume air is breathed out at 34'C and has a vapor pressure 
of 1 kPa when it is breathed in. From Table A.3, the exhaled vapor pressure 
is 5.3 kPa. Substituting these values into Eq. (12.15) gives hEr = 0.1 M .  

Some animals with small nasal passages exhale air at temperatures well 
below body temperature. Figure 12.3 compares exhaled air temperatures 
for several bird species with values for humans and for kangaroo rats. The 
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FIGURE 12.3. Temperature of exhaled air as a function of air temperature for 
several species (after Schmidt-Nielsen, 1 972). 

exhaled air temperature for the kangaroo rat is lower than air temperature, 
and approaches wet bulb temperature. 

The appropriate value of e, for animals which exhale air at temper- 
atures lower than body temperature is the saturation vapor pressure at 
exhaled air temperature from Fig. 12.3. To see how effective this is for 
water conservation, compute hE, for the kangaroo rat at 20°C. From 
Fig. 12.3, Ts = 18" C, so e, = 2.1 kPa. If the other values are as in 
the previous example, then hE, = 0.02 M, rather than 0.1 M. This is 
only 25 percent of the respiratory water loss per unit area of a human 
under similar conditions. The resulting water conservation is important 
for survival of kangaroo rats in their arid habitat. 

Cutaneous latent heat loss is discussed in Chs. 6 and 7. The general 
equation is 

where 

g,, g,,, and g,, are the conductances to vapor diffusion through the 
skin, coat, and boundary layer, and e, and ea are the vapor pressures at 
the subcutaneous (saturated) evaporating surface, and in the atmosphere. 
For animals with moist skins (earthworms, snails, and amphibians) g,, 
and g,, are large so the controlling conductance for water loss is the 
boundary layer conductance. For nonsweating animals, g, is often so 
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small that effects of g,, and g,, are negligible by comparison, as shown 
in Ch. 7. Table 7.2 gives some animal skin conductances. Table 12.1 
gives a more extensive listing. Note that species living in arid environ- 
ments tend to have the lowest vapor conductances. Little is known about 
the variability of these numbers or their dependence on environmental 
moisture or temperature. Much additional research is needed in this area. 
Accurate estimates of skin-diffusive conductance are important, both for 
accurate energy budget predictions and for water budgets of animals. The 
importance of skin water loss is illustrated by the fact that it accounts 
for 75 percent or more of the total water loss even for the desert tortoise 
(Schmidt-Nielsen, 1969). 

To illustrate the magnitude of hE,, we find the rate of skin water loss 
for a camel under circumstances similar to those for which hEr was found. 
If skin temperature is 36"C, then e, = 5.9 H a .  Assuming e, = 1 kPa, 
and using the skin conductance for camel from Table 12.1 gives 

J mol 5.9 kPa - 1 kPa 
hE, = 44000 - x 0.0032 - x 

W 
= 6.9 - . 

mol m2s 101 kPa m2 

The effect of coat and boundary layer conductance have been ignored, 
but their effect is small when the skin conductance is so low. If we assume 
hEr = 0.1M and M = 50 w/m2, then hE, = 5 w/m2. The skin latent 
heat loss is larger than this value and, in fact, makes up about 58 percent 
of the total. The total latent heat loss is around 20 percent of M. These 
percentages are probably fairly typical for resting endotherms that are not 
heat-stressed. For poikilotherms under similar conditions one typically 
assumes M = h E. 

As the animal becomes heat-stressed, latent heat loss increases, gen- 
erally by some active process such as sweating or panting. There is no 
general approach to the calculation of latent heat loss under these con- 
ditions since animal responses are so varied. The approach would need 
to be fitted to the particular species being studied. In Ch. 13 we look at 

TABLE 12.1. Skin conductance to vapor for non-heat stressed 
animals 

Mammals 
white rat 
human 
camel 
white footed mouse 
spiney mouse 

Reptiles 
caiman 
water snake 
pond turtle 
box turtle 
iguana 

mmol mP2 s-I 
10.6 
5.4 
3.2 
3.0 
2.8 

Reptiles (cont.) mmol m-2 s-' 
gopher snake 1.0 
chuckawalla 0.34 
desert tortoise 0.34 

Birds 
sparrow 5.4 
budgerigar 4.9 
zebra finch 4.1 
village weaver 3.3 
poor-will 3.1 
roadrunner 2.4 
painted quail 2.1 
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latent heat loss by sweating, but do not otherwise treat water loss under 
heat stress. 

Example 12.1. White crown sparrows migrate over long distances. In 
flight, both water and energy are expended. If an average sparrow weighs 
27 g, and can store 4 g of fat and 4 g of water (including the water 
obtained from metabolism), will its range be limited by stored energy or 
stored water? Assume the metabolic rate for flight is 6Mb and the energy 
content of fat is 40 Wg. Also assume T, = 10" C, T, = 38" C,  and 
ea = 1 kPa. 

Solution. The energy-limited flight time is equal to the total energy 
available divided by the rate of energy consumption. The rate of energy 
consumption is 6Mb. Assuming Mb = 50 w/m2, M = 300 w/m2. From 
Eq. (12.13), the sparrow area is A = 0.1 x (0.027)~/~ = 0.009 m2. The 
energy limited flight time is 

4g x 40000 
tamgy = = 59,259 s = 16.4 hour. 

300& x 0.009m2 

Water loss is from the skin and from the respiratory tract. The vapor 
pressure of the air is given, and the vapor pressure at the evaporating 
surfaces is e, (38) = 6.63 Ha .  Assuming a flight altitude of 1000 m, then 
pa = 89 kPa. Again we ignore effects of coat and boundary layer on vapor 
conductance, and use the sparrow skin conductance from Table 12.1. 
Using these numbers, the rate of skin water loss is 

mol 6.63kPa-1kPa mol 
E, = 0.0054 - x = 0.00034 - . 

m2s 89 kPa m2s 
Equation (12.15) can be used to get the respiratory water loss. The in- 
spired air is at the vapor pressure of the atmosphere and the expired air 
is saturated at the expired air temperature. From Fig. 12.3, the sparrow 
expired air temperature at 10°C ambient is 21°C. The saturation vapor 
pressure is 2.49 kPa. The rate of respiratory water loss is therefore 

2.49 kPa-1 kPa rnol 
E, = 300 89 Wa = 00021 - 

480000 x 0.05 m2s 

The total rate of water loss is the sum of respiratory and skin loss, or 
0.00045 rnol m-2 s-I. The stored water is 4 g +18 glmol = 0.22 mol. 
The water limited flight time is 

0.22 rnol 
ha te r  = = 54321 s = 15 hours. 

0.00045 $ x 0.009m2 

With this set of assumptions, it appears that water and energy are about 
equally limiting. The assumptions were not arbitrary, but were taken from 
literature on white crown sparrows, so the conclusions are probably not 
far off. It should not be a surprise that the two limitations would be that 
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well matched, since any unnecessary weight would also limit the range 
of the bird. 

12.4 Conduction of Heat in Animal Coats and 
Tissue 

The conduction of heat from the animal core to the environment is first 
through the vascularized tissues under the skin, then through the coat, and 
finally through the boundary layer to the surrounding air. Heat transfer 
from the body core to the skin surface of an animal depends on blood 
flow and is subject to regulation, within limits, by vasoconstriction or 
vasodilation. The regulation is important in control of body tempera- 
ture. Table 12.2 gives maximum and minimum values of average tissue 
conductance for several species. These conductances, and their range of 
variation, would appear incapable of having much effect on overall heat 
loss from animals with coats because they are so large in comparison with 
coat conductances. Their important effect, however, is probably in con- 
trolling the surface temperature of poorly insulated appendages, which 
also have small characteristic dimensions and therefore large boundary 
layer conductances. 

The conductance of animal coats is normally much lower than the 
tissue conductance, and is therefore the limiting conductance control- 
ling heat loss. Figure 12.4 shows conductance for pieces of fix under 
laboratory conditions. In Ch. 7 conductances for layers of still air are com- 
puted. Since heat transport in animal coats can be by conduction through 
the air, by longwave radiative transport, and possibly by free convection, 
the conductance of air sets the lower limit for coat conductance. The coats 
in Fig. 12.4 follow the air conductance line reasonably well and are well 
below the line for radiative conductance in free space. It is interesting 
that coat conductance appears to stay fairly constant at around 40 to 50 
mmol m-2 s-' for coats thicker than 3 cm, no matter how thick the coat 
is. 

The radiative conductance of a coat depends on the average distance ra- 
diation can travel within the coat (Cena and Monteith, 1975). The shorter 
the radiation path length the lower the radiative conductance. This dif- 

TABLE 12.2. Thermal conductance of peripheral tissue of animals (from 
Monteith and Unsworth, 1990; and Kerslake, 1972) 

Animal Vasoconstriction conductance Vasodilation conductance 
(mol m-2 s-I) (mol m-2 s-') 

steer 0.24 0.83 
calf 0.38 0.83 
pig (3 months) 0.42 0.69 
down sheep 0.46 1.4 
human 0.46 2.8 
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FIGURE 12.4. Coat conductance of animal fur compared to conductance of an 
equivalent thickness of still air and radiative conductance of open space. 

ference in radiative path length is the main factor determining the quality 
of insulation in both homes and outdoor clothing. From Fig. 12.4 it ap- 
pears that these coats are surprisingly effective at minimizing radiative 
transport within them. 

As with the tissue conductance, getting an overall picture of coat ef- 
fects on thermoregulation by looking only at conductances of pieces of 
fur is difficult. Coat depth varies from point to point, and an average 
thermal conductance for the entire body is needed. For this reason, con- 
ductances determined on live animals are likely to be more useful than 
those estimated on portions of animal coats. Calder and King (1974) 
give a relationship for the minimum conductance of birds, based on 
measurements of metabolic rate. It is 

r g H b , f i n  = 0.06 rn-0.15m~l m-'swl ) (12.17) 
L 

where m is the body mass in kg. In the absence of other information, 
minimum conductance could be computed from Eq. (12.17), or Fig. 12.4 
could be used to estimate the minimum conductance for the animal as- 
suming blood flow is restricted to the best insulated part of the body. The 
maximum conductance is achieved by shunting blood to poorly insulated 
appendages. Animals can often increase conductance by a factor of about 
three times the minimum by doing this. Figure 12.5 is a dramatic example 
of the range of conductance which can be achieved by an animal. Note 
that, for a resting white crown sparrow, minimum conductance occurs 
between about 10 and 25" C. By about 45°C the conductance has tripled. 
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FIGURE 12.5. Variation of tissue and coat conductance of white crown sparrows 
with temperature (data from Mahoney and King, 1977). 

Clearly this range of conductance is not achieved simply by vasodilation 
and vasoconstriction. Webster et al. (1985) showed that inmourning doves 
posture, ptiloerection, and other responses to cold could substantially alter 
conductance. 

It is interesting that conductance increases from its minimum with 
both increasing and decreasing temperature. The increase with increasing 
temperature is for thermoregulation, but the increase as temperatures drop 
below freezing is probably the result of shunting blood to appendages at 
these cold temperatures to avoid freezing them. 

Wind has a major effect on the thermal resistance of clothing and 
animal coats. Campbell et al. (1980) analyzed much of the available data 
on windspeed dependence of coat conductance and obtained the equation: 

where g(u) is the conductance (for heat or vapor) in wind, g(0) is the 
conductance ofthe coat at zero windspeed, and c is a constant that depends 
onthe wind permeability ofthe coat. Campbell et al. (1980) show variation 
in c between 0.03 slrn and 0.23 slrn, with typical values for dense coats 
3 to 4 cm thick being around 0.1 slrn. Therefore expect a 10 d s  wind to 
approximately double the animal conductance. 

Rain can also substantially alter the conductance of animal coats. Webb 
and King (1984) compared the conductance of wet and dry coats under 
a range of conditions, and found that, on average, the conductance of 
wet coats is about double that of dry coats. Part of the decrease is due 
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to decreased coat thickness, but a more important part is the latent heat 
transport. 

12.5 Qualitative Analysis of Animal Thermal 
Response 

Now that you have a general understanding of the behavior of the various 
terms in the energy balance equation, we return to Eq. (12.11) and relate 
it to strategies for thermoregulation in endotherms. Figure 12.6 is an 
idealized example of the response of an endotherm placed in a metabolic 
chamber as the temperature of the chamber is varied. Each of the zones in 
the diagram can be related to the energy budget equation for the animal 
(Eq. (12.1 1)). Within the thermoneutral zone the animal is able to balance 
its energy budget by adjusting body conductance, g ~ b .  This has no direct 
metabolic cost, so the metabolic rate remains constant over this range. 
Typically the thermoneutral range includes the range of temperatures in 
the normal living environment of the animal and therefore changes with 
the season. 

The lower critical temperature is at the lower end of the thermoneutral 
zone. At this temperature the animal has reached its minimum conduc- 
tance and heat loss from further reduction in environmental temperature 
must be balanced by an increase in metabolic rate. As said previously, 
maximum aerobic rate is about ten times basal rate. A metabolic rate 
of 500 W m-2 would allow animals with even moderate insulation to 
survive the coldest temperatures on earth. In practice it is unusual to find 
metabolic costs for thermoregulationabove about 150 W m-2, about three 
times the basal rate. 

lower critical upper critical 
temperature temperature 

I 

Air Temperature 

FIGURE 12.6. Thermoneutral diagram for an endotherm. 
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At the top of the thermoneutral zone the upper critical temperature 
marks the point at which whole body conductance is maximum. As the 
upper critical temperature is approached latent heat loss is increased by 
some energy-requiring process such as panting or sweating. (Sweating 
is not a passive process; sweat has about half the concentration of salts 
as normal body fluids so salts must be removed before secreting the 
sweat.) Since evaporative cooling requires some energy, the metabolic 
rate must increase somewhat as is shown in the diagram. As environmental 
temperature increases, body temperature also increases somewhat and 
this increases metabolic rate. At these high temperatures the only avenue 
available for balancing the energy budget is the latent heat term. When air 
temperature is equal to body temperature, the latent heat loss must equal 
the metabolic heat production. If the air temperature is higher than body 
temperature, this additional heat gain must also be dissipated as latent 
heat. The rate of latent heat loss depends heavily on the vapor pressure 
of the environment, and possibly on the boundary layer conductance, but 
maximum values of latent heat loss for fairly arid environments range 
from 200 to 400 W m-2. 

The strategy for balancing the energy budget over a wide range of 
environmental conditions should now be clear. The preferred mode is by 
varying conductance. Below the thermoneutral zone, metabolic energy 
is required to balance the energy budget, while above the thermoneutral 
zone evaporation of water is required. 

12.6 Operative Temperature 

We returnnow to the definition of the operative temperature T, that was in- 
troduced inEq. (12.1 1). There we explainedthat the operative temperature 
combines air temperature and radiation in a single equivalent tempera- 
ture. This is a convenient way to represent the animal environment for 
at least two reasons. First, temperature is intuitively useful because it is 
easier for us to picture how an animal would respond to a 20°C change 
in temperature than it is to picture how it would respond to a 400 W m-* 
change in absorbed radiation. Second, a lot of the knowledge we have on 
thermal physiology of animals comes from experiments conducted in en- 
vironmental chambers. The operative temperature allows us to use results 
of these experiments directly in outdoor situations where the combined 
radiation and temperature produce an operative temperature equivalent 
to conditions in the environmental chamber. 

The operative temperature (sometimes called the equivalent blackbody 
temperature) is the temperature of a blackbody cavity (with air tempera- 
ture equal to wall temperature) that provides the same heat load (or cold 
stress) as is present in the natural environment of the animal. Another 
way of saying that the heat load is the same in the two environments 
is to say that M - hE for the animal is the same in the two environ- 
ments. Therefore a mathematical definition of the operative temperature 
can be obtained by substituting Eq. (12.1 1) for M - AE in Eq. (12.10) 
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and solving for T,. The result is: 

The operative temperature is the air temperature plus or minus some tem- 
perature increment which depends on absorbed radiation, wind speed, 
characteristic dimension of the animal, and temperature. In a blackbody 
cavity (a room or metabolic chamber) where the wall and air tempera- 
tures are equal, the absorbed radiation is equal to the emittance at air 
temperature, so T, = Ta. Outdoors, in the shade or under clouds, and 
with high wind (high conductance) the radiation increment is small. Un- 
der a clear night sky Rabs is smaller than the emittance at air temperature, 
so T, < To. In bright sunshine, the operative temperature can be much 
larger than air temperature. 

Example 12.2. As an example of the calculation of T,, we find the op- 
erative temperature for a person in a 1 m/s wind, 30" C air temperature, 
and full sun. We assume the environmental conditions are those given in 
Example 11.4. If we assume 8, the angle between the solar beam and the 
axis of the person, is 60°, then Fp = 0.26 (Fig. 11.6). For dark cloth- 
ing, we assume as = 0.8 and &, = 0.97, so (refer to Example 11.4 for 
details): 

An average characteristic dimension for a person (legs, arms, body, etc.) 
is d = 0.17 m, so the boundary layer conductance (forced convection 
with naturally turbulent wind) is: 

mol 
gHa = 1.4 x 0.135 X JL - = 0.46 z. 

0.17m 
The radiative conductance is: 

4aT; 4 x 5.67 x lo-* x 3 0 3 ~ ~ ~  mol 
g , =  = 

J = 0.22 - 
CP 29.3 G3-Z m2s 

The operative temperature is (Eq. (12.19)): 

When we want to make the point that a day is extremely hot we often 
say something like "it was a hundred degrees [F] in the shade," implying 
that one would feel much hotter than 100 degrees in the sun. The oper- 
ative temperature conveys this same sentiment quantitatively. It adds a 
temperature increment to the air temperature to indicate the temperature 
of a room which would feel the same as the heat load in the sun. In the 
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example just given, the equivalent temperature would be uncomfortably 
hot (well above body temperature) even though the air temperature is not 
uncomfortably high. 

If windspeed in this example were increased to 3 mls, Te would de- 
crease to 43" C. If white clothing with a, = 0.3 were worn, Te would be 
36" C at u = 1 mls. 

12.7 Applications of the Energy Budget 
Equation 

We return briefly to the animal energy budget equation (Eq. (12.1 1)) 
to consider some applications. The metabolic rate, latent heat loss, body 
temperature, and body conductance are primarily physiological, and have 
upper and lower bounds set by the physiological makeup of the animal. 
By determining the limits of these variables, the extremes of environment 
(T,) can be predicted that can be tolerated by the animal. The combina- 
tion of minimum body temperature, maximum sustainable metabolic rate, 
minimum conductance, and minimum latent heat loss defines the lower 
lethal limit for the animal. The combination of maximum allowable body 
temperature, minimum metabolic rate, maximum conductance, and max- 
imum latent heat loss defines the upper lethal limit. The animal cannot 
survive extended periods of time in environments below its lower lethal 
limit or above its upper lethal limit. These limits define a kind of climate 
space in which the animal can reside. The climate space is a function of 
both air temperature and absorbed radiation. 

In addition to being useful for predicting animal behavior, the energy 
budget equations can be used to predict the food energy required to main- 
tain a favorable body temperature. If the operative temperature of the 
environment is specified, and the body temperature and conductance are 
known, the energy budget equation can be used to compute the metabolic 
rate needed to balance the energy budget. This is just the metabolic re- 
quirement for thermoregulation, but other energy sinks are usually small 
compared to the requirement for thermoregulation. 

Example 12.3. How much food is required for thermoregulation by a 
1.5 kg rabbit in an environment with T, = O°C? Assume d = 0.1 m and 
u = 1 d s .  

Solution. Since T, is given, there is no need to consider the radiative 
environment of the rabbit, but when considering both day and night con- 
ditions in a typical rabbit environment T, and T, are likely to be about 
the same. Equation (12.11) can be used to find M. We need to know the 
body temperature, the heat and vapor conductances, and the latent heat 
loss. We assume body temperature is 37" C, and that the combined respi- 
ratory and skin latent heat loss is 20 percent of the metabolic rate. There 
are three conductances for heat loss, the convective-radiative gHr7 the 
coat g ~ ~ ,  and the tissue gHr. The convective-radiative conductance is the 
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sum of the forced convection conductance in Table 7.6 and the radiative 
conductance: 

rnol 
= 0.77 - . 

m2s 

An estimate of the coat conductance can be obtained from Fig. 12.4 for 
rabbit. A mean conductance is around 0.045 rnol mP2 s-I . Correcting this 
for wind effectsusing Eq. (12.18) gives: g(1) = 0.045 x (1 +0.1 x 1) = 
0.05 rnol m-2 sV2. There are no data for rabbit tissue conductance in 
Table 12.2, but the numbers shown there suggest it might be around 
0.5 rnol m-2 s-' . Substituting these values into Eq. (12.1 1) gives: 

0.05 x 0.5 mol 
g ~ b  = = 0.046 - 0.05 + 0.5 m2 s 

29.3 & x 0.77 (37 C - 0 C) 
M(l - 0.2) = 0.77 rnol m-2s-' 

+ 0.046 mol m-2s-1 

From Eq. (12.13), the area of a 1.5 kg animal is 0.13 m2, so the energy 
requirement of the rabbit is 

The caloric content of glucose as 15.7 MJIkg, so a kilogram of glucose 
would last 

15.7 x lo6 J 
= 2.05 x 10% or 24 days. 

7.6 

A kilogram of dry grass would last less than half that long because of 
inefficiencies in absorption in the digestion process. Efficiency factors 
are known for many animals and diets. 

12.8 The Transient State 

Short periods of intense activity, such as running, flying, climbing, or 
exposure to high winds at cold temperatures are common in animals. 
During these times the heat storage term q in Eq. (12.1) is not zero, and 
there is a positive or negative storage of heat in the body. Transient state 
energy budgets are important to the animal, but have not been examined 
in much detail by researchers. 

If we assume that the thermal conductivity and heat capacity of an 
animal's core are large compared to that of the coat and peripheral tissues, 



Animals and their Environment 

we can write: 

where V is the body volume, A is surface area, pb and cb are the body 
density and specific heat, and Tb is body temperature. Equation (12.1 1) 
can be rewritten to include transient effects as: 

Equation 12.21 is difficult to integrate for homeotherms at temperatures 
within their control band because M, hE, and rHb are functions of Tb. 
For poikilotherms, we can assume M - hE = 0; then integration of 
Eq. (12.21), taking all but Tb as constant, gives: 

with: 

Equation (12.22) can be used to find the time required for a poikilotherm 
to change from Tbl to Tb2 when Te is changed. The symbol t represents 
the time constant of the animal. It has units of seconds, and is an in- 
dex of response time. At t = t the system will have changed to within 
l l e  = 0.37 of the total change from Tbl, the initial temperature, to Tb2, 
the h a 1  temperature. Thus animals with large time constants could sur- 
vive exposure to environments outside their climate space for relatively 
long times. From Eq. (12.23) it can be noted that large volume, small sur- 
face area, and small thermal conductance maximize t . Thus animals that 
weigh only a few grams respond quickly to environmental changes and 
are close to equilibrium temperature. Animals weighmg many kilograms 
would seldom be at steady state and could survive short-term extremes 
in exposure much more readily. 

A transient analysis can also be used to indicate thermal behavior 
of homeotherms when they are subjected to environments that are suffi- 
ciently harsh to force complete commitment for their temperature control 
systems. Under these conditions M, h E, and g ~ b  become constant at their 
maximum or minimum values and it is possible to integrate Eq. (12.21). 
The resulting equation is similar to Eq. (12.22) except that the final 
temperature, rather than being T,, is T, + (M - hE)/gHc, because 
of metabolic heat and evaporation. 

12.9 Complexities of Animal Energetics 

The models we have presented for organis~nvironment interaction can 
be very useful for analyzing organism response to environment and un- 
derstanding the most important factors in the animal environment. There 
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are many cases, however, where our simplifying assumptions are too re- 
strictive, and can lead to incorrect conclusions. The limitations we have 
imposed on latent heat loss exclude any analysis of sweating. A more 
complete analysis, however, will be given in Ch. 13. We also failed to 
consider heat loss by conduction to the ground or other substrate (even 
though the equations for that are given in Ch. 8). Perhaps the most serious 
omissions are a failure to consider the possibility that radiation can pen- 
etrate the animal coat, and the failure to consider the three-dimensional 
nature of the animal. To add these complexities goes beyond the objec- 
tives of this book, but excellent work has been done in both areas, and we 
briefly refer to the results of that work. 

Our energy balance equations are essentially for a one-dimensional an- 
imal. We assume that the heat is well enough mixed internally to maintain 
an essentially constant internal temperature. We also chose a single char- 
acteristic dimension and a single Rabs value for the animal in spite of the 
fact that we know both of these values vary widely over the surface of the 
animal. Coat conductance also varies substantially fromplace to place de- 
pending on the thickness of the coat and exposure to wind. Bakken (198 1) 
addressed these issues with what he calls a two-dimensional operative 
temperature model. This new model just divides the animal up into many 
zones (head, legs, body in sun, body in shade, etc.), each of which can be 
adequately analyzed by an equation similar to Eq. (12.11). An operative 
temperature for each zone is also computed. The overall energy budget is 
thenjust the area-weighted average of all zones. From this kind of analysis 
he concludes that in strong wind or sun the one-dimensional model can 
give substantially different results than the two-dimensional model. In 
one example, the operative temperature from the two-dimensional model 
was 6°C lower than for the one-dimensional model. 

If radiation penetrates the coat of an animal, the location of energy 
absorption ceases to be the outer boundary of the coat. Dissipation of 
heat, however, still occurs at the outer boundary, so the effective radiation 
heat load on the animal is higher. This is a kind of miniature greenhouse 
effect. Walsberg et al. (1978) determined that, for small animals with 
high boundary layer conductances, radiation penetration is important in 
determining the optimum coat color for animals in desert environments. 
Solar radiation penetrates to deeper depths in white coats than black. 
Even though the total energy absorbed by a black coat is much greater 
than that absorbed by a white one, the additional heat load from radiation 
penetration of the white makes the black coat more suitable for desert 
environments. Observations of coat color in desert dwelling animals seem 
to confirm this result. 

In sparse animal coats, both long and shortwave radiation penetrate the 
coat, and it becomes impossible to treat the animal-environment interface 
as a definite boundary as we have in this chapter. To deal with it properly 
as a continuum, computer models must be used. Porter et al. (1994) have 
developed such models and have shown them to work well in ecological 
applications. The model has the advantage that it properly treats all of the 
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complexities of the animaknvironment interaction. The disadvantage is 
that it provides little opportunity for understanding the physical principles 
involved in the exchange processes except to the person who creates the 
model. 

12.10 Animals and Water 

The water budget for an animal can be written in the same form as the 
energy budget, namely: water in - water out = stored water. Unlike the 
energy budget, the water budget can seldom be analyzed as a collection 
of steady-state processes. Intake is from free-water sources, metabolism, 
and water in the animal's food. Water is taken in discrete events, not 
continuously. As we have shown, cutaneous and respiratory water loss 
are relatively continuous, and determined largely by animal activity and 
environment. Water is also lost in feces and urine, though this is often 
only a small fraction of the total water loss. Water loss reduces the amount 
of water stored in the blood, tissues, or digestive tract, and may decrease 
the osmotic potential (increase concentration) of body fluids. 

MacMillian and Christopher (1975) had usedurinary osmotic potential 
of kangaroo rats (Dipodomys merriami) in the desert as an index of water 
balance. Their data (Fig. 12.7) show only slight variations in plasma 
osmotic potential through the season. Urine osmotic potential decreased 
in the summer and increased in the winter, indicating higher water deficits 
in the summer. Urine osmotic potentials of some other desert rodent 
species were less well correlated with seasonal temperature changes 

4 -- plasma 

Nov Mar Jul Nov Mar Jul Nov Mar Jul Nov Mar 

FIGURE 12.7. Osmotic potentials of plasma and urine of desert dwelling 
Dipodomys merriami over a three-year period (data from MacMillen and 
Christopher, 1975). 
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because of changes in diet with season. For comparison, the osmotic 
potential of human plasma is -0.75 Wkg and human urine is generally 
between -2.1 and -3.3 kJkg. 

MacMillian also conducted laboratory studies on several desert rodent 
species to determine their ability to maintain water balance on a diet of 
dry birdseed. The kangaroo rat neither lost nor gained weight, but some 
other species fell far short of maintaining positive water balance. Others 
actually gained weight. The pocket mouse (Perognathus longimembris) 
seemed to be able to maintain a particularly favorable water balance on 
this diet. One wonders first how these animals can get enough water from 
dry seeds to supply their needs, and second why the kangaroo rat would 
have a less favorable water balance than the smaller mouse. Some light 
can be shed on these questions by a simple analysis. 

When an animal oxidizes food to produce heat, water is also produced. 
One kilogram of glucose, when oxidized, produces 600 g of water. The 
ratio of latent heat from respiratory water to metabolic heat produced 
is h Epr / M = 0.1. We have already shown the respiratory latent heat 
loss for the kangaroo rat at 20°C to be 0.02M. The skin latent heat loss 
(Eq. (12.16)) is 5 w/m2, if we assume C,, - C,, = 40 mmol/mol and 
g,, = 2.8 mmol m-2 s-' (Table 7.2). Equation(l2.11) cannow be used to 
find M at Te = T, = 20°C. We assume g ~ b  = 0.14 mol m-2 s-' for the 
kangaroo rat and 0.21 mol m-2 s-' for the pocket mouse (estimates from 
Figure 12.4 and Table 12.2). Also, assume that g~~ = 0.8 mol m-2 s-'. 
The metabolic rates at 20°C, from these assumptions are 88 wlm2 for 
the mouse and 65 w/m2 for the rat. The ratio of water produced to water 
evaporated is Ep,/Ee, = O.lMl(5 + 0.02M). For the rat, the ratio 
is 1.03, and for the mouse, 1.3. These calculations are crude, but they 
show that the animals produce enough metabolic water to supply their 
water requirements without any additional water input. They also show 
that the more favorable water balance of the mouse is the result of the 
higher metabolic rate it requires to maintain constant body temperature. 
This metabolic requirement increases as temperature decreases and is 
apparently too high during the winter months for the mice to remain 
active because they hibernate during the winter. 

References 

Bakken, G. S. (1981) A two-dimensional operative-temperature model 
for thermal energy management by animals. J. Them. Biol. 23-30. 

Bernstein, M.H. (1971) Cutaneous water loss in small birds. Condor 
73:468-469. 

Calder, W. A. and J. R. King . (1974). Thermal and caloric relations of 
birds. p. 259-413 inD. S. Farner and J. R. King, eds. Avian Biology, 
V. 4. New York: Academic Press. 

Campbell, G. S., A. J. McArthur, and J. L. Monteith . (1980). Windspeed 
dependence of heat and mass transfer through coats and clothing. 
Boundary Layer Meteorol. 18:485-493. 



Animals and their Environment 

Cena, K. and J. L. Monteith (1975) Transfer processes in animal coats, 
11. Conduction and convection. Proc, R. Soc. Lond. B. 188:395-411. 

Kerslake, D. McK. (1972) The Stress of Hot Environments. London: 
Cambridge University Press. 

Lasiewski, R. C., M. H. Bernstein, and R. D. Ohmart (1971) Cutaneous 
water loss in the Roadrunner and Poor-will. Condor 73:470-472. 

MacMillian, R. E. andE. A. Christopher (1975) The water relations of two 
populations ofnoncaptive desertrodents. Environmental Physiology 
of Desert Organisms. (N.F. Hadley, ed.) New York: John Wiley. 

Mahoney, S. A. and J. R. King (1977) The use of the equivalent blackbody 
temperature in the thermal energetics of small birds. J. Thermal 
Biology 2: 115-120. 

Monteith, J. L., and M. H. Unsworth (1990) Principles of Environmental 
Physics, 2nd ed. London, Edward Arnold. 

Porter, W. P. and D. M. Gates (1969) Thermodynamic equilibrium of 
animals with environment. Ecol. Monogr. 39:245-270. 

Porter, W. P., J. C. Munger, W. E. Stewart, S. Budaraju, and J. Jaeger 
(1994) Endotherm energetics: from a scalable individual-based 
model to ecological applications. Aust. J. Zool. 42: 125-162. 

Robinson, D. E., G. S. Campbell, and J. R. King (1976) An evaluation of 
heat exchange in small birds. J. Comp. Physiol, 105: 153- 166. 

Schmidt-Nielsen, K. (1969) The neglected interface: the biology of water 
as a liquid-gas system. Quart. J. Biophys. 2:283 -304. 

Schmidt-Nielsen, K. (1972) How Animals Work. London: Cambridge 
University Press. 

Schmidt-Nielsen, K., J. Kanwisher, R. C. Lasiewski, J. E. Cohn, and W. Le 
Bretz (1969) Temperature regulation and respiration in the Ostrich. 
Condor 71:341-352. 

Scholander, P. F., V. Walters, R. Hock, and L. Irving (1950) Body in- 
sulation of some arctic and tropical mammals and birds. Bio. Bull. 
99:225-236. 

Walsberg, G. E., G. S. Campbell, and J. R. King. (1978) Animal coat 
color and radiative heat gain: a re-evaluation. J. Comp. Physiol. 
126:211-222. 

Webb, D. R. and J. R. King . (1984). Effects of wetting on insulation of 
birds and mammals coats. J. Them. Biol. 

Webster, M. D. (1985) Heat loss from avian integument: effects ofposture 
and the plumage. Indiana Academy of Sci.94:68 1-686. 

Problems 

12.1. Compare the respiratory and skin water loss for humans and mice 
when air temperature is 20" C and air humidity is 0.4. Assume the 
expired air temperature for the mouse is the same as for the kangaroo 
rat in Fig. 12.3. 
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12.2. Estimate the upper and lower lethal limit environments for a spar- 
row. For this, assume that the maximum sustainable metabolic rate 
for thermoregulation is 3 Mb, and the maximum latent heat loss is 
150 w m-2. 

12.3. How much food does a 100 kg caribou need (kglday) to survive an 
arctic winter with average T, of -20"C? Assume u = 3 mls. 

12.4. What is the operative temperature for a sunbather standing on a 
beach at noon on a clear day, with T, = 30°C, u = 2 mls, and 
a, = 0.7? 
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Human-environment interaction involves the same principles discussed 
in Ch. 12. However, we need to look at three additional factors. They are 
clothing, sweating, and comfort. These are examined by considering sur- 
vival in cold environments, survival in hot environments, and the human 
thermoneutral energy budget. The variables that need to be considered 
are metabolic rate, surface area, latent heat exchange, body temperature, 
and body (clothing and tissue) conductance. 

13.1 Area, Metabolic Rate, and Evaporation 

The total body area in square meters (often called the DuBois area in 
honor of DuBois and DuBois (1915) who first proposed the formula) can 
be calculated from: 

where m is the body mass in kilograms and h is height in meters. As a 
rough rule of thumb, body area of adults can be estimated from: 

A = 0.026 m. (13.2) 

Metabolic rates can be calculated using Eq. (12.14), but a better guide 
can be obtained from measurements. Table 13.1 gives values of M for 
various activity levels. These activity levels conform quite well to our 
rules of thumb of Mb = 30 - 50 w/m2 and 

The published values for caloric content of foods are normally in units 
of kilocalories (called calories in the food literature) rather than joules. 
Assuming a 2 m2 surface area for a person, W m-2 in Table 13.1 can be 
converted to kcal of food intake per hour. The conversion factor is: 

kcal - J 1 cal 1 kcal 3600 s 
hr 

= x -  x 2 m  x - x x - = 1 . 7 ~ .  
m2s 4.18J 1OOOcal hr 

Therefore, according to the numbers in Table 13.1, desk work would 
consume 160 kcdhr and sleeping 85 kcdhr. For eight hours of sleep 
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TABLE 13.1. Rates of metabolic heat production for humans 

Activity 
Sleeping 
Awake, resting 
Standing 
Working at a desk or driving 
Standing-light work 
Level walking at 4 km/hr or moderate work 
Level walking at 5.5 km/hr or moderately hard work 
Level walking at 5.5 kdhr with a 20-kg pack or sustained hard work 
Short spurts of very heavy activity such as in climbing or sports 

Data from Landsberg (1969) 

and 16 hours standing, the daily caloric requirement would be around 
3100 kcal. If a person performed hard physical labor for 12 hrlday and 
rested for the remaining 12 hours, the caloric intake would need to increase 
to 6000 kcallday. For those who exercise for weight control, one hour of 
strenuous exercise is worth about 600 kcal in excess food intake. The 
caloric content of fat is 40 Wg, so strenuous exercise for 1 hr would use 
63 g of fat. One might conclude that regulation of caloric intake is an easier 
mode of weight control that exercise. As a note of caution, remember that 
the values in Table 13.1 are for thermoneutral temperatures. If additional 
metabolic energy is required for thermoregulation (Eq. (12.1 1)) this must 
be added to the values in Table 13.1. 

Latent heat is lost through respiration and through water loss directly 
from the skin. In Ch. 12 we derive an expression for respiratory latent 
heat loss, and find it to be around 0.1 M in relatively dry environments 
(Eq. (12.15)). In more moist environments, it is smaller. Evaporation 
from the skin in the absence of thermal sweating is called insensible 
perspiration, and can be calculated from Eq. (12.16) using the appropriate 
value for skin conductance from Table 12.1. Under typical conditions 
(e,, = l.OkPa, pa = 101 kPa, and g,, = 5.4mmol m-2 s-I), AE, = 
12 w/m2. This is a little over twice the respiratory latent heat loss at 
M = Mb. 

The core temperature of the body depends mainly on metabolic heat 
production until environmental conditions become too severe for ther- 
moregulation. A convenient equation expressing the relationship between 
metabolic rate and core temperature is (Kerslake, 1972): 

Tb = 36.5 + 4.3 x IO-~M (13.3) 

where M is in w/m2. 
Resistance to heat transfer in the human body is, as with other 

homeotherms, subject to vasomotor control. The tissue conductance ( g , ~ )  
varies, within limits, to balance the energy budget. The limits given 
in Table 12.2 are g~~ = 0.46 mol m-2 s-I for vasoconstriction and 
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2.8 rnol mP2 s-' for vasodilation. These values were calculated from Ker- 
slake (1972, Fig. 7.22). Monteith gives a range of 0.35 to 1.4 rnol m-2 s-' . 
The difference is probably due to acclimatization of subjects or possi- 
ble subject-to-subject variation. In any case, we use the range 0.46 to 
2.8 rnol m-2 s-' for our calculations. 

Clothing conductance for humans is more difficult to treat than coat 
conductance for animals because of the extremely wide possible range of 
clothing available (down parkas to bathing suits). Normal indoor clothing 
has a conductance of around 0.4 rnol m-2 s-' in still air. In moving air, 
this is drastically increased, as common experience will verify. In the 
absence of conductance measurements for a given assemblage of clothing, 
one can use estimates based on windspeed, permeability, thickness, and 
ventilation of the clothing. 

13.2 Survival in Cold Environments 

Equation (12.1 1) will be used as the basis for our examination of energy 
and thermal resistance requirements for humans. Consider fist  the lowest 
temperature at which a human can survive. This can be found by assuming 
extreme values for M, g ~ b ,  h E, and g ~ ~ .  If we assume d = 0.17 m, 
u = 3 d s ,  hEr = O.lM, hEs = 12 w/m2, and Tb = 36O C then the 
lowest equivalent temperature for survival can be calculated for various 
resistances and metabolic rates. From Table A.3, with Ta = 0" C, gr = 
0.16 rnol m-2 s-I . The boundary layer conductance is: 

rnol 
- 1.4 x 0.135/= = 0.79-. gHa - 0.17 m m2s 

The convective-radiative conductance g ~ ,  = 0.16 + 0.79 = 0.95 rnol 
m-2 s-'. These values are substituted into Eq. (12.1 l), along with the 
body temperature and latent heat loss, and the equation is solved for 
operative temperature to give: 

This equation ignores a small temperature dependence of the radiative 
conductance and the metabolic rate and also assumes that skin latent 
heat loss is independent of temperature. It does, however, show the main 
effects of T, and g ~ b  on M. These are shown in Fig. 13.1 where M is 
plotted as a function of Te for three values of conductance. 

The highest value of M is for no clothing, the second is for a conduc- 
tance comparable to a heavy wool business suit, and the third is equivalent 
to a good quality winter sleeping bag. It can be seen that survival is pos- 
sible at quite low temperatures, even without clothing, if metabolic rate 
can be kept high. 
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FIGURE 13.1. Metabolic rate required to balance the energy budget at various 
operative temperatures, for three values of gHb.  

Darwin (1832) made some interesting observations on survival among 
the natives of Tierra del Fuego under conditions which must have been 
near the limits of survival. He reports: 

The climate is certainly wretched: the summer solstice was now passed, yet 
every day snow fell on the hills, and in the valleys there was rain accompanied 
by sleet. The thermometer generally stood about 45F, but in the night fell to 38 or 
40. . . . while going one day on shore near Wallaston Island, we pulled alongside 
a canoe with six Fuegians. These were the most abject and miserable creatures I 
anywhere beheld. On the east coast the natives, as we have seen, have guanaco 
cloaks, and on the west, they possess sealskins. Amongst these central tribes the 
men generally have an otter skin, or some small scrap about as large as a pocket 
handkerchief, which is barely sufficient to cover their backs as low down as their 
loins. It is laced across the breast by strings, and according as the wind blows, it 
is shifted from side to side. But the Fuegians in the canoe were quite naked, and 
even one full-grown woman was absolutely so. It was raining heavily, and the 
fresh water, together with the spray, trickled down her body. In another harbor 
not far distant, a woman, who was suckling a recently-born child, came one day 
alongside the vessel, and remained there out of mere curiosity, whilst the sleet 
fell and thawed on her naked bosom, and on the skin of her naked baby! . . . At 
night, five or six human beings, naked and scarcely protected from the wind and 
rain of this tempestuous climate, sleep on the wet ground coiled up like animals. 

Perhaps a more useful way to plot Eq. (13.4) is to show the conductance 
required for different levels of activity and operative temperature. Using 
this graph the clothing thermal. conductance required for any given activity 



Wind Chill and Standard Operative Temperature 

-40 -30 -20 -10 0 10 20 
Operative Temperature (C) 

FIGURE 13.2. Thermal conductance required for survival in cold at various 
operative temperatures and activity levels. 

and environment could be found. This is shown in Fig. 13.2. The following 
example illustrates the use of Fig. 13.2. 

Example 13.1. Assume you are going outdoors when T, = -20" C. 
Find the coat plus tissue conductance needed for standing, walking, and 
running. 

Solution. The required conductances can be read directly from Fig. 13.2. 
If you intend standing for long periods of time at M = 90 w/m2, you 
would need g ~ b  = 0.05 mol m-2 s-'. For walking you would need 
0.1 mol m-2 s-' . And for running you would need 0.25 mol mP2 s-'. 

13.3 Wind Chill and Standard Operative 
Temperature 

Figure 13.2 shows the required conductance for the prevailing temper- 
ature and wind conditions. Wind has a small effect on this required 
conductance. However the effect of wind on clothing conductance can 
be large and must be taken into account when choosing the amount of 
clothing necessary to provide the required conductance. 

Equation (12.18) gives the wind speed dependence of animal coat con- 
ductance and also works well for clothing conductance. The permeability 
factor, c in the equation, however, depends strongly on the fabric from 
which the clothing is made. Table 13.2 shows c values for a range of 
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TABLE 13.2. Wind permeability factor, c (eq. 12.18) for a range 
of fabrics 

Fabric c (dm) 
Very open weave shirt 1.1 
Knit cotton undershirt or T shirt 0.86 
Average of 13 civilian shirts (broadcloth or oxford weave) 0.61 
Light worsteds, gabardines, tropicals 
Seersucker suiting 
Uniform twill, 8.2 oz. Army 
Poplin, 6 oz. Army 
Byrd cloth, wind resistant 
JO cloth, special wind resistant 

Data from Newburgh (1968) 

materials, measured by determining the rate of evaporation through the 
fabric. 

Since these data are for effects of wind on vapor transport, they are not 
ideal for computing effects of wind on heat transport, but lacking more 
direct information we use these values for both heat and vapor. According 
to these figures, a 10 mls wind would double the conductance of JO cloth, 
and a 1 mls wind would double the conductance of a very open weave 
shirt. 

The effect of wind on clothing and boundary conductance is addressed 
by another thermal index, the standard operative temperature, T,. The 
standard operative temperature, like the operative temperature, combines 
several environmental variables into a single environmental index which 
has dimensions of temperature. The operative temperature combined ra- 
diation and air temperature into a single equivalent temperature. The 
standard operative temperature adds wind effects. Standard operative 
temperature is the temperature of a uniform enclosure with still air which 
would result in the same heat loss from an animal or person as occurs in 
the windy, outdoor condition under investigation. The popular term for 
T, is the wind chill factor. 

To derive an equation for Te,, start with the energy budget equation 
(Eq. (12.11)). By definition, M - hE is the same for the person in the 
standard enclosure and the person in the natural environment. Therefore 
the following can be written: 

where the s subscripts on the operative temperature and the conductances 
indicate the standard (still air enclosure) conditions. Solving for Tes gives: 
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There are two important things to note about Eq. (13.5). First, when 
the conductances are equal to the standard values, then Tes = Te, so 
the standard operative temperature and the operative temperature are the 
same. The second is that Tes = Te = Tb for an ectotherm which does not 
control body temperature by internal heat production. People sometimes 
assume that, since wind makes us cold, it also makes plants, snakes, and 
spiders cold. It can be seen from Eq. (13.5) that this is not true (except to 
the extent that wind reduces T,). 

Equation (1 3.5) can be used to derive a wind chill chart similar to those 
used by the weather service. To simplify this we assume that the clothing 
conductance is low enough so that the boundary layer, tissue, and radiative 
conductances can be ignored. We also assume that the wind dependence 
of clothing conductance is given by Eq. (12.18). Equation (13.5) then 
becomes: 

Comparison of this equation with the wind chill chart given by Landsberg 
(1969) indicates that the value of c used for wind speeds below about 
10 m/s is 0.046. This is lower than even the most wind resistant fabrics 
given in Table 13.2, so it apparently assumes a best case. Wind chill with 
more permeable clothing would be more serious than the standard chart 
indicates. Landsberg's chart shows little change in wind chill at wind 
speeds above 10 d s .  This may be the result of his basing the wind chill 
relation on boundary-layer conductance, which increases in proportion to 
the square root of wind speed, rather than on the permeability of clothing, 
which increases more nearly linearly with wind speed. Figure 13.3 shows 
wind chill temperature (standard operative temperature) as a function of 
operative temperature (near air temperature for these wind conditions) 
for three values of wind speed. 

To use Fig. 13.3, enter the chart at the air temperature, go to the wind 
speed, and read off the wind chill temperature. For example, if the air 
temperature were 0" C, and the wind speed were 10 d s ,  then the wind 
chill temperature would be - 17" C. This would mean that even though the 
air temperature is only O" C, the outdoors would feel as cold to you as a 
room with still air would at - 17" C. 

13.4 Survival in Hot Environments 

The same considerations apply to survival in hot environments as do for 
determining the upper lethal limit of animals. However, one additional 
factor needs considere&-that of sweating. The rate of sweat evaporation 
may be either environmentally or physiologically controlled. If the skin 
surface is wet, the rate of water loss from sweating is given by Eq. (12.16) 
with g,, + oo. If the skin surface is not wet, latent heat loss is controlled 
by sweat rate. Control of sweat rate is still not entirely understood, but 
apparently it involves sensing of surface heat flux (Kerslake 1972). Thus, 
changes in metabolic rate or external environment can cause changes in 
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FIGURE 13.4. Latent heat loss from the skin of heat-stressed humans as a function 
of vapor pressure and total vapor conductance. Skin temperature is assumed to 
be 35 C. 

clothing and boundary layer conductance, and atmospheric vapor pres- 
sure. Boundary layer conductance for vapor transport is given by Eq. 7.33. 
In a 2.5 mls wind, boundary layer conductance, 

2.5 m/s mol 
gua = 1.4 x 0 . 1 4 7 J y  0.17 m = 0.8 - m2 s 

The rightmost line in Fig. 13.4 therefore corresponds to the evaporation 
rate ftom wet skin without clothing. 

Example 3.2. What clothing conductance would allow skin to remain 
dry in a heat-stressed person if the vapor pressure of the air is 1.5 kPa? 

Solution. Consulting Fig. 13.4, with ea = 1.5 kPa, it is found that a 
conductance of 0.2 mol m-2 s-' limits latent heat loss, but a conductance 
of 0.3 does not. A conductance between these two, say 0.25 rnol m-2 s-' , 
should therefore allow the skin to remain dry. This is the combined cloth- 
ing and boundary layer conductance. If the boundary layer conductance 
is 0.8 mol m-2 s-', then the clothing conductance would be 

Survival under heat-stress conditions can be predicted using the energy 
budget equation, but it needs rederived without the assumption that h E, 
is combined with hE,, as it is in Eq. (12.1 1). Thiscis most easily done 
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by drawing an equivalent electrical circuit like Fig. 12.1, with thermal 
conductors being represented by electrical conductors, temperatures (heat 
concentrations) by voltages, and heat flux densities by current sources or 
sinks. The new diagram is like Fig. 12.1 except that the heat source in the 
body is M - AE,, and an additional heat sink is added at the skin surface 
equal to AE,. Writing the energy balance equation for this circuit gives 

As an example of the use ofEq. (1 3.7), we investigate the effect of clothing 
on the maximum operative temperature that can be tolerated by a person 
working at various rates. We assume e, = 1 H a ,  Tb = 38O C, g ~ ,  = 
1 mol m-2 s-' , g H r  = 2.8 mol m-2 s-' (Table 12.2, vasodilated), g,, = 
gHc, hE, = 0.1 M, and g,, = 0.8mol m-2 s-'(u = 2 . 5 d s ;  see the 
previous example). Results of the calculations are shown inFig. 13.5. The 
part of the graph which shows increasing operative temperature with 
decreasing clothing conductance corresponds to the part of Fig. 13.4 
where AE, is at its maximum. Adding clothing does not decrease the 
rate of evaporative cooling because it is already limited at the maximum 
sweat rate of the person. The clothing does, however, decrease the heat 
load on the person because the environment temperature is higher than 

0.1 0.2 0.3 0.4 
Heat and Vapor Conductance of Clothing (molIm2ls) 

FIGURE 13.5. Maximum tolerable operative temperature for aperson as a function 
of clothing conductance. Vapor pressure is 1 kPa, wind speed if 2.5 mls. 
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the body temperature. Adding clothing therefore allows the person to 
tolerate a hotter environment. In a desert, with low vapor pressure and 
high solar loads, adding clothing (up to a point) decreases, rather than 
increases heat load on a person. The inflection point of the graph occurs 
when coat conductance becomes small enough to start controlling water 
loss. 

Keep in mind that Fig. 13.5 is for a low vapor pressure. It does not apply 
at higher vapor pressure where any decrease in clothing conductance 
would reduce latent heat loss. If the atmospheric vapor pressure is high 
enough to keep the skin wet without clothing, then any addition of clothing 
will decrease dissipation of heat. This brings out the point that clothing 
must be matched to environment to be most useful in minimizing heat 
stress. Proper clothing for one hot environment would not necessarily be 
proper clothing for another. 

13.5 The Humid Operative Temperature 

Much effort has gone into deriving a single index that will indicate en- 
vironmental heat stress for humans. The environmental variables that 
affect heat stress are radiation, temperature, vapor pressure, and diffu- 
sion conductances to heat and vapor. For cold stress, where latent heat 
loss is treated as a fixed value relatively independent of environment, 
the standard operative temperature adequately combined radiation and 
heat transfer characteristics of the environment into a single number. An 
appropriate energy budget equation was then used to indicate the strain 
imposed by a given stress, the stress being indicated by the operative 
temperature. It would seem reasonable to attempt to extend the opera- 
tive temperature concept to include atmospheric vapor pressure. If this 
could be done, it would again enable the combination of all relevant en- 
vironmental variables into a "stress index," and with an appropriately 
derived energy budget equation, could indicate the resulting strain on the 
individual. 

The derivation proceeds in a way similar to the derivation of the opera- 
tive temperature in Ch. 12: substitute Eq. (12.16) for hEs and Eq. (12.19) 
for T, into Eq. (13.7) to get an energy budget equation in terms of phys- 
iologic and environmental variables. The vapor mole fraction difference 
in Eq. (12.16) can be approximated using the Penman transformation 
(discussed in detail in Ch. 14) to give: 

e, - e, = es(T,) - e, (T,) + e, (T,) - e, 2 A(T, - T,) + D (13.8) 

where A is the slope of the saturation vapor pressure versus temperature 
function (Ch. 3) and D is the vapor deficit of the atmosphere. The slope 
A has a fairly strong temperature dependence. If its value is taken at the 
average of Ts and T, then Eq. (13.8) is almost exact. Taking A at the 
average of Tb and T, gives adequate accuracy for our purposes here. With 
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these substitutions, the energy budget equation becomes: 

where 

y* = Y Wgus + l/gu, + l/g,,) A 
, and s = - .  

l/gHc + l/gHr Pa 
The humid operative temperature (Gagge, 1981) is the temperature of a 
uniform enclosure, with a humidity of 100 percent. For a person in such 
a humid chamber, Eq. (13.9) reduces to: 

where Teh is the temperature of the enclosure, or the humid operative 
temperature. The required definition of humid operative temperature is 
obtained by subtracting Eq. (1 3.10) from Eq. (1 3.9) to give: 

These equations are more general forms of Eqs. (12.1 1) and (12.19) since, 
as gvs becomes small, y * becomes large, making y */(s + y *) go to one 
and terms with y* in the denominator go to zero. Equation (13.1 1) is the 
heat stress index we were seeking, since it combines all of the relevant 
environmental variables into a single equivalent temperature. As with 
Te, the operative temperature Teh is equal to the body temperature of an 
ectotherm (with M - hE = 0) for the environment specified by To, Rni , 
D, and gHr. 

The temperature of a copper sphere covered with black, moistened 
cloth and filled with water, has been used to determine wet globe temper- 
ature and these measurements have been related to human comfort in hot 
environments. The exchange properties of such a system are not identical 
to those for a human, so the temperature measured in this way would not 
be the humid operative temperature. It is possible, though, that wet globe 
temperature would correlate with Teh . 

When some air movement is present, the skin surface is wet, and 
clothing vapor and heat transfer resistances can be assumed equal, y* 
becomes almost equal to y. At body temperature, the term y /(s + y) is 
0.17. The second term in Eq. (13.1 1) is therefore quite small and Teh is 
usually only a few degrees different from T,. 

13.6 Comfort 
In their usual activities, humans are generally not so concerned with 
minimum conditions for survival as they are with comfort. For this, 
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the energy budget approach still gives the needed answers. We need 
only put in physiological parameters that we think represent comfort. 
These, of course, vary considerably from individual to individual. For 
our purposes we assume that a person is comfortable if Tb = 37O C, 
and gffr = 1 rnol m-2 s-'. For normal indoor conditions we take 
g ~ =  = 0.2 mol mP2 s-' and g, = 0.2 mol mW2 s-' so g ~ ,  = 
0.4 mol m-2 s-'. Thermal conductance of normal indoor clothing is as- 
sumed to be 0.4 mol m-2 s-'. Combining Eqs. (12.15) and 12.16, and 
assuming both skin and expired air temperature are 34" C, gives: 

When this expression is substituted into Eq. (12.1 1) estimates of comfort- 
able operative temperature can be obtained. These are plotted in Fig. 13.6 
for vapor pressures of 0.5 and 3 kPa. If the room wall temperature is 
equal to air temperature then operative temperature and air temperature 
are equal. Figure 13.6 shows that for normal active metabolic activity 
(M = 90 w/m2), a comfortable room temperature at low vapor pressure 
would be 23" C. In a humid room, the comfortable temperature would 
be 21" C. Thus it is possible to reduce room temperature and maintain 
comfort if the air is humidified. This has been suggested as a means for 
reducing heating costs. A more complicated analysis would be necessary 
to determine whether humidifying the air would actually reduce heating 
costs since one wouldneed to compare the cost ofevaporating the water to 

50 100 150 200 
Metabolic Rate (Wlm2) 

FIGURE 13.6. Comfortable operative temperature for two air vapor pressures as a 
function of metabolic rate. 
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humidify the air with the cost of keeping the room a few degrees warmer. 
Figure 13.6 also shows that a relatively small change in activity results in 
a fairly large change in comfortable temperature. This is also confirmed 
by common experience. 

Many other aspects of comfort could be investigated using the energy 
budget equation. For example, one sometimes feels cold or hot in a room 
even when the thermometer indicates an air temperature of 22" C. This is 
particularly true in rooms with large windows. If we were to measure the 
window temperatures (and possibly wall or ceiling temperature) we would 
likely find that they are significantly above or below air temperature. The 
radiation from these cold or hot areas therefore produces an operative 
temperature that is quite different from air temperature. Thus we see 
that our radiant energy environment is very important to comfort, even 
indoors. 
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Problems 

13.1. Find your body surface area using the DuBois formula (Eq. (1 3.1)) 
and compare the result to the area predicted by Eq. (13.2). 

13.2. Find the standard operative temperature for a windy, overcast day 
(u = 10 mls, T, = 0" C). If you were intending to walk outdoors 
on such a day, what clothing conductance would be needed? 

13.3. What is the hottest humid operative temperature you could work at 
with u = 3 m/s and light clothing ( g H c  = 1 mol m-2 s-I)? 

13.4. What is the humid operative temperature for the sunbather in Prob- 
lem 12.4? Assume e, = 2 kPa. What rate of water consumption 
would be required to maintain water balance? 



Plants and Plant 
Communities 14 

Our discussions in Chs. 12 and 13 focus on determining which environ- 
ments were energetically acceptable to animals and on energetic costs 
of living in those environments. Similar questions apply to the study of 
plants and plant communities. In this chapter we are interested in the en- 
vironmental factors that determine temperatures and transpiration rates, 
and in the factors that control carbon assimilation. The energy budget 
again plays the central role in these analyses. 

While an animal can choose its environment to best suit its energetics, 
plants are pretty well stuck with whatever environment happens to exist 
at the location and time of their growth. Over generations, selection and 
adaptation result in leaf morphologies, canopy structures, etc. which give 
the plants native to a particular environment a competitive advantage for 
that location. Desert plants that experience frequent shortages of water, 
for example, tend to have narrow leaves, while leaves of plants from more 
moist environments may be much larger. We might ask ourselves what 
environmental limitations there are to leaf size and other leaf character- 
istics related to energy exchange, or whether there is an optimum leaf 
form for a particular leaf environment. Answers to questions like these 
have obvious application in managed ecosystems such as agriculture. The 
answers are likely to be found both in studying the physics of energy and 
mass exchange, and in observing the characteristics of natural plants and 
plant communities in different environments. 

Three factors must be favorable for a leaf to remain alive. Average 
net photosynthesis must be positive and the leaf water potential and tem- 
perature must remain within nonlethal bounds. Mature leaves apparently 
have no mechanism for importing sugars, so a leaf which is not able to 
maintain a positive net photosynthesis abscises. Net photosynthetic rate is 
determined by environmental factors and by the water balance of the leaf. 
To get a clear picture of plant responses to environment the environmental 
effects on leaf temperature, leaf water balance, and photosynthesis need 
to be considered. 

In this chapter we also consider these processes in plant communities, 
but only in a simple sense. So-called big leaf models are often used to 
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model temperature, transpiration, and photosynthesis in plant commu- 
nities. The equations for such models are similar to those for individual 
leaves, but with conductances adjusted appropriately. The big leaf models 
for plant communities are presented in this chapter. In Ch. 15 we present 
the more complex models that deal with plant communities as collec- 
tions of individual leaves. We first consider the effects of environment 
on transpiration and leaf or canopy temperature, and then present several 
models that relate photosynthesis to light, temperature, and transpiration. 
Finally, we combine the photosynthesis and energy balance equations to 
predict response of photosynthesis to plant and environmental variables, 
and attempt to specify optimum leaf form for a particular environment. 

14.1 Leaf Temperature 

The temperature of a leaf is determined, as with a poikilothermic animal, 
by the energy budget of the leaf. In Chs. 12 and 13 equations for the tem- 
perature of poikilotherms are derived. For a dry system, where latent heat 
exchange is a small and predictable fraction of the total energy budget, 
the operative temperature gives the temperature of the poikilotherm. For 
a wet system, where latent heat loss is an important part of the energy 
budget, the humid operative temperature (Eq. (13.11)) is the temperature 
of the poikilotherm. The leaf normally is a wet system, so its tempera- 
ture is equal to the humid operative temperature. We derive that equation 
again here to clarify its connection to the energy budget for a leaf. If heat 
storage and metabolic heat production are assumed negligible, the energy 
budget for a leaf is: 

where Rabs is the absorbed radiation, Lo, is the emitted thermal radiation, 
H is the sensible heat loss, hE  is the latent heat loss, TL is the leaf 
temperature, Ta is the air temperature, and ea is the vapor pressure of 
air. The heat conductance, from Table 7.6, is g ~ ,  = 1.4 0 . 1 3 5 m ,  
where u is the wind speed and d is the characteristic dimension of the leaf 
(0.72 times the leaf width). For applications in outdoor environments, the 
factor of 1.4 is included. The vapor conductance g, is the average surface 
and boundary conductance for the whole leaf. Care needs to be taken in 
defining the vapor conductance since abaxial and adaxial conductances 
are generally not equal. Assuming the boundary layer conductances are 
equal for the two sides of the leaf, the appropriate vapor conductance for 
Eq. (14.1) is computed from 

where the superscripts a b  and ad refer to abaxial and adaxial surface 
conductances. Table 7.2 gives some typical surface conductances for 
leaves. 
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Some species have stomata on only one side of the leaf (usually the 
abaxial side). Such leaves are called hypostomatous. The conductance 
for these leaves is computed from just the first term on the right of Eq. 
(14.2), since, for zero surface conductance, the second term is zero. Leaves 
with stomates on both sides of the leaf are called amphistomatous. In 
the special case where an amphistomatous leaf has equal abaxial and 
adaxial conductances, the overall conductance for the leaf is equal to the 
conductance for either side. For simplicity, the examples in this chapter 
assume equal conductances on the two sides of the leaf. Leaves of this 
type are most common in grasses. 

Equation (14.1) shows the explicit relationships for radiant emittance, 
sensible heat, and latent heat loss. It therefore relates leaf thermodynamic 
temperature explicitly to leaf properties and environmental variables. The 
equation for leaf temperature could be solved using mathematical proce- 
dures for nonlinear equations, but we cannot obtain an explicit solution 
because of the nonlinear emittance and saturation vapor pressure terms. 
Since an explicit form of the equation is useful for our analyses, we obtain 
an approximate solution using the linearization techniques introduced in 
Chs. 12 and 13. First, the thermal emittance term can be linearized using 
Eq. (12.6) to obtain: 

where gr is the radiative conductance. The latent heat term can also be 
linearized using Eq. (1 3.8): 

where D is the vapor deficit of the atmosphere, s = Alp,, and A = 
de, (T)/dT. This linearization was first used by Penman (1948) to derive 
the famous Penman equation for evapotranspiration. Using Eqs. (14.3) 
and (14.4), Eq. (14.1) can now be written as: 

Rabs - &,aT; - hguD/pa - ( cpg~r  + J-sgu)(T~ - Ta) = 0. (14.5) 

The convective-radiative conductance g~~ = g~~ + gr has been used 
here. Equation (14.5) can now be readily solved for leaf temperature to 
obtain: 

TL = Ta + Rabs - & s u e  - hgvD/pa 
CpgHr + h~gu 

The second form is the same as Eq. (13.11) for the humid opera- 
tive temperature, where y* = ygH,/gv. Either equation provides a 
straightforward way to determine leaf temperature from air temperature, 
radiation, wind, and vapor deficit. 
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Example 14.1. Find which is cooler in a hot, dry environment, a wide 
leaf or a narrow leaf, if both have access to an unlimited water supply. 
Assume leaf widths of 3 mm and 3 cm; T, = 38" C, e, = 1.1 kPa, 
u = 1.5 d s ,  and Rabs = 750 w/m2. Pressure is 100 Ha .  Also assume 
the leaves are hypostomatous with an adaxial conductunce of zero and an 
abaxial conductance of 0.5 rnol m-2 s-'. 

Solution. From Table A.3, it can be seen that e,(T,) = 6.63 kPa, A = 
0.359 kPa, B = 532 w/m2, and g, = 0.23 rnol md2 s-' . Using these 
values the following can be computed 

s = 0.359 kPa C-'/lo0 kPa = 0.00359 C-' 

we also have (Table A.1), c, = 29.3 J mol-' C-', and (Ch. 3) y = 
6.66 x C-' . For the leaf specific calculations we have the following 
table. 

10 cm wide leaf 

d = 0.7 x 0.1 = 0.07m 

g ~ ,  = 1.4 x 0 . 1 3 5 f i  = 0.875 rnol m-2 s-I 

= 0.95 rnol m-2 s-I 

g ~ ~  = 0.875 + 0.23 = 1.105 rnol mF2 s-I 
- 0Sx0.5x0.953 - 0 164 mol m-2 s-I - 0.5+0.953 - ' 

y* = 6.66 x '.'05 = 0.00449 C-' 
,00448 . '~~  234 5.53 

TL = 38 + .00449+.00359 ( 1.105x29.3 100~0.00449 ) 
= 35.2" C 

3 mrn wide leaf 

d = 0.7 x 0.003 = 0.0021 m 

= 5.OSmol rn-' s-I 

= 5.50 rnol rnd2 s-I 

g ~ r  = 5.05 + 0.23 = 5.73 m0l m-2 s-' 
- 0.5~0.5~5.50 = 0.229 mol m-2 s-l ,- 0.5+5.50 

y* = 6.66 x = 0.0167 C-I 
0 1 6 7 ~ ' ~ ~ ~  ( 234 5.53 

TL = 38 + - 5.73x29.3 100~0.0167 ) 
= 36.4" C 

While the temperatures of the two leaves do not differ by much, it 
is significant and interesting that the large leaf is cooler than the small 
one. The greater rate of convective energy exchange associated with the 
smaller leaf causes the leaf to be nearer to air temperature than the larger 
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leaf and thus warmer. This is the result of the smaller y * for the large 
leaf. In descriptive terms, this is like the sweating animal with body tem- 
perature below air temperature. When the leaf is cooler than the air, it 
is taking up heat from the air. It can decrease the amount of heat taken 
from the air, and therefore decrease its temperature, if the boundary layer 
conductance is low. 

Equation (14.6) can be used directly to answer a rather significant 
ecological question. Plant ecologists commonly take air temperature as 
the environmental variable characterizing a site. The implicit assumption 
is that air temperature and plant temperature are equal, or at least related 
by some constant, since it is really plant temperature that determines 
productivity. Equation (14.6) can be used to check this assumption. 

Figure 14.1 shows TL - T, as a h c t i o n  of leaf characteristic dimen- 
sion, stomatal conductance, and isothermal net radiation for T, = 30" C, 
h, = 0.2, and u = 1 m/s. The two radiation levels correspond roughly to 
full sun and dark. The two stomatal conductances are roughly the highest 
and lowest for leaves from Table 7.2. It can be seen that small leaves 
remain within a few degrees of air temperature, no matter what the stom- 
atal conductance. Large leaves have much higher leaf temperatures than 
small leaves when stomata are closed and lower leaf temperatures when 
stomata are open. However, for a wide range of leaf sues, when stomata 
are open, leaf temperatures tend to remain near air temperature no matter 
what the leaf sue. It is interesting that, for leaves with open stomata and 
high radiation loads, an intermediate size around 10 mm appears to give 
lowest leaf temperatures. 

1 10 100 
Leaf Characteristic Dimension (mm) 

FIGURE 14.1. Difference between leaf and air temperature for various leaf 
dimensions, stomatal conductances, and radiation loads. 
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In the plant kingdom many examples of adaptations are seen which 
appear to be for the purpose of controlling leaf temperature near optimum 
levels. For example, in deserts, where water is scarce and air temperatures 
tend to be above optimum temperature for photosynthesis, leaves tend to 
be small, allowing leaf temperatures to be as near to air temperature as 
possible without evaporating large amounts of water. In alpine regions, 
where air temperature is likely to be below optimum temperature, leaves 
are not necessarily small, but plants tend to grow in dense clumps or 
cushions near the ground. This provides a large effective characteristic 
dimension and low wind speed, and thus results in temperatures some- 
times 10 or 20" C above air temperature. Perhaps the most interesting are 
some species which orient their leaves or have leaf hairs which minimize 
the radiation load on the leaves. Ehleringer and Mooney (1978) describe 
a desert shrub, Encilia farinosa, that has relatively large leaves with high 
reflectance. The shrub grows along drainage channels where water is rel- 
atively more plentiful and can therefore maintain high transpiration rates. 
Its leaves are often several degrees below air temperature. 

Equation (14.6) can be used to investigate another interesting phe- 
nomenon. A number of researchers have observed a kind of homeothermy 
in leaves. When airtemperature is below optimumleaftemperature, leaves 
tend to be above air temperature, but when air temperature is above opti- 
mum temperature, leaf temperature is below air temperature. Is it possible 
that leaves are homeotherms? Figure 14.2 shows leaf temperatures in 
full sun, computed using Eq. (14.6), as a function of air temperature 

10 20 30 40 50 
Air Temperature (C) 

FIGURE 14.2. Leaf temperature versus air temperature for several stomata1 
conductances when Rni = 300 W/m2 and dew point temperature is 10" C. 
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for several values of stomatal conductance. Dew point temperature, and 
therefore atmospheric vapor pressure, is kept constant as air temperature 
changes (as it is during the day). The heavy black line shows the slope 
which would result if a one degree increase in air temperature resulted in 
a one degree increase in leaf temperature. It can be seen that, in fact, tem- 
peratures of transpiring leaves do tend to remain more constant than the 
air temperature. It is obviously not, however, an active response of leaves 
to maintain constant temperature, since a wet wash rag (infinite surface 
conductance) maintains the most constant temperature of all. The appar- 
ent homeothermy is just a normal response of an evaporating surface. 
Obviously, this does not prevent it from being beneficial to the plant. 

14.2 Aerodynamic Temperature of Plant 
Canopies 

An equation for predicting the aerodynamic temperature of plant canopies 
can be derived just as was done for a leaf. This temperature is referred 
to as aerodynamic temperature because it is derived from the solution of 
aerodynamic transport equations. There are two differences: the energy 
budget of a plant canopy must include the heat storage in the soil, and the 
boundary layer conductances and absorbed radiation must be computed 
using the appropriate equations from Chs. 7 and 11. The energy budget 
equation is: 

where G is the flux density of heat into or out of the soil. Using the 
same substitutions used for leaves, the canopy temperature equation is 
obtained: 

The boundary layer conductances for heat and vapor are computed from 
(Table 7.6): 

The total vapor conductance for the canopy is g, = l/(l/g,, + l/g,,). 
The canopy conductance g,, is the weighted sum of stomatal conduc- 
tances of all leaves in the canopy, plus a conductance for evaporation 
from the soil. Kelliher et al. (1994) showed that maximum canopy con- 
ductances tend to be conservative and fairly independent of leaf area 
index. They say that maximum g,, is around three times maximum g,,. 
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14.3 Radiometric Temperature of Plant 
Canopies 

Vegetative canopies are exceedingly complex, being composed of many 
leaves, branches, stems, soil, etc. Even though the aerodynamic temper- 
ature can be defined by Eq. (14.8), its relation to true thermodynamic 
temperature is virtually impossible to discover. However, another canopy 
temperature is easily measured. This is the radiometric temperature. The 
radiometric temperature of a blackbody (unity emissivity) surface (TBB) 
is estimated from a direct measurement of thermal radiant flux density 
(@(TBB))  by inverting an integral of Eq. (10.4) over the wavelength band 
of sensitivity of the infrared radiometer. If a surface is not a blackbody, 
then adjustments must be made for emissivity. Norman and Becker (1995) 
discuss radiometric temperature and thermal emissivity in detail. Infrared 
radiometers that are used to measure radiometric temperature are called 
infrared thermometers. Because infrared thermometers are intended to 
estimate the temperature of a surface and be minimally influenced by the 
intervening atmosphere, usually they are sensitive only to wavelengths 
where the atmosphere is relatively transparent (between 8 and 13 pm 
wavelengths, see Fig. 10.6). From satellites, atmospheric influences of 
3 to 10" C are not uncommon even in the most transparent wavelength 
bands. We know that the integral of Eq. (10.4) over all wavelengths is 
equal to GT;,. If we assume the radiant flux density in the 8 to 13 p m  
wavelength band is proportional to T 4  (a good approximation, but not 
perfect) we can work with T~ instead of complicated functions of the 
blackbody integral. Unfortunately the thermal emissivity of natural sur- 
faces between 8 and 13 p m  may not be equal to the broad-band (4 to 
80 pm) thermal emissivity (particularly for soils), and the 8 to 13 pm 
emissivity must be known to obtain radiometric temperatures. Fortunately 
most full-cover vegetative canopies have thermal emissivities in the 8 to 
13 pm wavelength band of 0.98 to 0.99. The reason for this is discussed 
near the end of Ch. 15. 

Even for a blackbody, the radiometric temperature, the thermodynamic 
temperature, and the aerodynamic temperature resulting from a surface 
energy balance (Eq. (14.8)) will all be equal only if the surface and its 
surroundings are in thermodynamic equilibrium (they have a constant, 
uniform temperature). Since this rarely occurs in nature, in general these 
temperatures are not expected to be interchangeable. The aerodynamic 
temperature depends on the areodynamic conductance between the atmo- 
sphere and various parts of the surface that are at different temperatures. 
The radiometric temperature depends on the fourth power weighting of 
the absolute temperature of the parts of the surface that make up the 
view of the infrared thermometer. Because radiometric temperame can 
depend on radiometer view angle and aerodynamic temperature does 
not, the two will generally be different. Consider a partial-cover canopy 
with hot dry soil (50" C) and cool transpiring leaves (25" C), a com- 
mon occurance. If an infrared thermometer pointed at this surface from 
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directly overhead views 40 fiercent soil and 60 percent vegetation, assum- 
ing emissivity to be 1.0, the radiometric temperature would be 35.7" C 
((0.6 * 2984 + 0.4 * 3234)1/4 = 308.7 K). If the view zenith angle of the 
infrared thermometer were changed to 85" , the view would be mainly 
vegetation and the indicated temperature would change to about 25" C. 
Since the aerodynamic temperature would have to be the same for the 
two infrared thermometer view angles, clearly the two temperatures can 
be quite different. 

Since leaf and canopy temperature are determined, in part, by stom- 
atal conductance, and conductance is determined, in part by availability 
of water to the plant, an effort has been made to sense plant water stress 
from airplanes or satellites using thermal imaging of vegetation tem- 
perature. For a dense, full-cover canopy, radiometric temperature may 
approximate aerodynamic temperature within 1" C. However, Eq. (14.8) 
provides a means of finding canopy conductance from measurements 
of canopy and air temperature only if wind, radiation, and vapor deficit 
are known. Without measuring these confounding variables, or at least 
making the measurements during times when they are relatively constant 
(such as midday on clear days with high vapor deficits), determining 
water stress very accurately using this technique is difficult. Even when 
water stress can be determined from a canopy temperature measurement, 
additional information is needed to determine whether a crop needs ir- 
rigation. Stomata may close and canopy temperature increase for many 
reasons, only one of which is a soil water deficit. 

14.4 Transpiration and the Leaf Energy Budget 

Another useful application of the leaf energy budget is to compute the 
transpiration rate. Written in terms of latent heat loss (useful in the energy 
budget) the transpiration rate for a leaf can be computed using Eq. (6.7): 

where E is the vapor flux density (mol m-2 s-'), g, is the vapor con- 
ductance (mol m-2 s-'), h is the latent heat of vaporization for water 
(44 Wmol), and e, (TL) and e, are the vapor pressures at the leaf surface 
and in the air. This form of the equation is not very useful because the 
vapor pressure in the leaf depends on leaf temperature, and the leaf tem- 
perature is not usually known. However, Eq. (14.10) can be combined 
with the energy budget equation to obtain an equation for the transpira- 
tion rate which is independent of leaf temperature. To do this first use 
the Penman transform (Eq. (14.4)) to separate Eq. (14.10) into two parts, 
one dependent on the temperature difference between leaf and air, and 
the other dependent on the vapor deficit of the air. Then substitute Eq. 
(14.6) for TL - T, to eliminate leaf temperature from the equation. With 
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some manipulation this results in: 

where y* = c,g,,lAg,,, that is, y* is a psychrometer constant, but now 
with the heat and vapor conductances included. If the conductances 
for heat and vapor are equal, then y* = y, the thermodynamic psy- 
chrometer constant. 

Example 14.2. Compare the transpiration rates of the leaves in Exam- 
ple 14.1. 

Solution. All of the information needed to solve Eq. (14.11) was ob- 
tained in Example 14.1 except for the latent heat of vaporazation. From 
Table A.2, h = 43500 Jlmol. For the large leaf the latent heat loss is 

For the small leaf it is 

If mass or molar water loss values are needed, these numbers could be 
converted to moles per square meter per second by dividing by the latent 
heat of vaporization. For comparison purposes, though, the latent heat 
loss values are adequate. It can be seen that it takes about 50 percent 
more water (per unit area) to keep the small leaf cool as it does the large 
one, even though the small leaf is not staying as cool as the large one. If 
the leaf is to remain below air temperature in a hot, dry climate, there are 
clear advantages to large leaf size, both in terms of leaf temperature and 
in terms of water loss. If the leaf temperature is above air temperature 
(closed stomates), then the smallest leaves remain the coolest. Thus in arid 
climates, plants tend to have small leaves and low stornatal conductances 
to simultaneously conserve water and maintain leaf temperature as near 
air temperature as possible. 

Equation (14.1 1) shows that the latent heat loss from a leaf is the 
weighted sum of two terms, the isothermal net radiation (Rabs - E ~ O T ~ )  
and the isothermal latent heat loss (hg, Dlp , ) .  The weighting factors are 
s / ( s  + y*)  and y * / ( s  + y *). As temperature increases, s increases rapidly 
(see Table A.3) so the higher the air temperature, the more dominant 
radiant energy input is in determining evaporation. 

Even though Eq. (14.1 1) looks simple, it is not easy to guess how it 
will behave in all cases. For example, one might look at Eq. (14.10) and 
predict that increasing wind speed would increase evaporation of water 
from a leaf. This, however, does not take into account the effect of the 
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Wind Speed (mls) 

FIGURE 14.3. Latent heat loss from a leaf as a function of wind speed showing 
that transpiration can increase or decrease with wind speed depending on other 
environmental conditions. 

wind on leaf temperature. Using Eq. (14.1 I), it is possible to include the 
effect of wind on boundary layer conductance for both heat and vapor. Fig- 
ure 14.3 shows the evaporation rate, computed using Eq. (14.1 I), for 
different stomata1 conductances. It can be seen that, with a high radiation 
load, increasing wind can either increase or decrease the evaporation rate. 
At high stornatal conductance, increasing boundary layer conductance in- 
creases transpiration rate, but at low stornatal conductance the increase in 
wind speed cools the leaf enough so that the decrease in vapor pressure 
more than compensates for the increase in boundary layer conductance 
and transpiration rate decreases with wind speed. 

14.5 Canopy Transpiration 

The equation for canopy transpiration is, again, similar to the one for leaf 
transpiration. We treat the canopy as a big leaf, so all that is needed is to 
add soil heat flux to Eq. (14.11) and compute the Rni and conductances 
using the appropriate equations. The canopy transpiration equation is: 

This is the well known and widely used Penman-Monteith equation 
(Monteith, 1965) for estimating evapotranspiration from plant commu- 
nities. As we have presented it here, it appears just to provide canopy 
transpiration estimates at a particular instant, but it is now commonly 
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used to estimate transpiration over days, weeks, or months. It is better to 
supply at least daily radiation, temperature, wind, and vapor pressure data 
to compute daily transpiration, and then sum these for weekly or longer 
transpiration estimates, rather than to average radiation, wind, etc. over a 
longer period to compute weekly or monthly transpiration. 

Equation (14.12) can be used to compute the evapotranspiration (ET) 
from any plant community, whatever its canopy conductance, if the 
canopy conductance is known. The canopy conductance, however, gen- 
erally is not known except when it is at a maximum. This condition of 
maximum conductance is important, though, since it sets an upper limit 
to the rate of water use, and is the rate of water use by a plant community 
which is not water stressed. The water requirements of agricultural crops 
are often near the maximum ET rate because the crops are managed to 
avoid water stress. In recent years the Penman-Monteith equation has 
found increasing use for estimating crop evapotranspiration. The data re- 
quirements are substantial (radiation, temperature, wind, vapor pressure, 
canopy conductance, and canopy height), but one usually obtains bet- 
ter results using the PenmawMonteith equation and estimating missing 
data, than by using a simpler equation that does not use such a mechanistic 
approach. 

A particular use of the Penman-Monteith equation is for the compu- 
tation of reference ET. Reference ET is the ET from a 12 cm high grass 
crop that completely covers the ground and is not short of water (Allen 
et al., 1994). The canopy conductance of the grass crop is assumed to 
be 0.6 mol m-2 s-'. Equation (14.9) is used to compute boundary layer 
conductance. For a fixed measurement height, the conductance is just a 
constant multiplied by the wind speed (a number of comparisons of esti- 
mates with and without the stability parameters have shown no advantage 
to using them in the calculation). Allen et al. (1994) recommend using 
g~~ = gva = 0 . 2 ~  when wind is measured at a height of 2 m. The vapor 
conductance is therefore 

0.6 x 0.224 
gv = 0.6 + 0 . 2 ~  

mol m-2 s-' , 

and the apparent psychrometer constant is 

Only the convective conductance (rather than gHr) is used in computing 
y*. It is not clear why, but the estimated reference ET comes closer 
to the measured ET without including the radiative conductance (Allen 
et al., 1994). With these substitutions, computation of reference ET is 
straightforward. The ET of tall crops, or crops that do not completely 
cover the ground, is determined by multiplying the reference ET by an 
empirically determined crop coefficient. 
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14.6 Photosynthesis 
The assimilation of carbon by leaves follows the general reaction 

c02 + H20 + light -+ CHzO + 0 2  

where CH20 is intended to represent carbohydrate such as sucrose or 
starch. Assimilation involves many chemical reactions which occur inside 
the chloroplasts in leaf mesophyll cells and are catalyzed by numerous 
enzymes. The substrates for assimilation are C02, water, and light. The 
carbon dioxide comes from the atmosphere and diffuses into the leaf 
through the stomata. The water is available in excess within the leaf, since 
the biochemical reactions occur within the highly hydrated cell. Light 
is from the sun and is the photosynthetically active radiation PAR) dis- 
cussed in Ch. 10. Besides carbohydrate, oxygen is an important byproduct 
of photosynthesis. 

The leaf environment supplies the C02 and the light for photosynthe- 
sis and controls the temperature of the leaf. The enzymes that catalyze the 
photosynthetic reactions are all strongly temperature dependent, so leaf 
temperature can play an important role in determining the assimilation 
rate for a leaf. We are primarily interested in knowing how assimila- 
tion responds to environment, but this requires some understanding of 
the biochemistry, since the biochemistry and the environment interact so 
strongly in determining how much assimilation can occur. 

Most plant species fall into one of two major groupings with respect 
to carbon assimilation. In the most common group the primary product 
of photosynthesis is a three carbon sugar, so these species are called C3. 
A less common photosynthetic mechanism is present in tropical grasses 
such as maize and sugar cane. In these, the fist product of photosynthesis 
is a four carbon compound. These species are therefore called C4. Carbon 
dioxide and oxygen compete for the same enzyme in C3 species resulting 
in the loss of some of the C02 in a process called photorespiration. The 
fixing of C02 into the four carbon compound in C4 species concentrates 
the carbon dioxide and minimizes photorespiration. The concentration 
of C02 inside the stomata of leaves is therefore much lower in C4 than 
C3 species typically resulting in higher photosynthetic rates and higher 
water use efficiencies. 

14.7 Simple Assimilation Models 

Two general approaches have been used to derive models relating 
assimilation to environment. One is more empirical and the other 
more mechanistic. Both are useful for understanding and predicting 
leaf-environment interaction. 

The simpler model applies mainly to plant communities. Monteith 
(1977) observed that when biomass accumulation by a plant community 
is plotted as a function of the accumulated solar radiation intercepted by 
the community, the result was a straight line. Figure 14.4 shows 
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FIGURE 14.4. Total dry matter produced by a crop as a function ot total 
"cumulative" intercepted radiation (from Monteith, 1977). 

Monteith's results. The model suggested by Fig. 14.4 is 

where S, is the total solar radiation incident on the canopy, fs  is the 
fraction of incident solar radiation intercepted by the canopy, and e is the 
conversion efficiency for the canopy. This conversion efficiency can be 
expressed in several ways; the radiation can be intercepted or absorbed 
as well as photosynthetically active or solar radiation, and the canopy 
assimilation can be expressed as COz or dry matter. All these possible 
combinations have been used and the numerical values for each is different 
from the others. Monteith expressed assimilation as g m-2 day-' and St as 
the total solar radiation in MJIday, and reported e values around 1.5 g/MJ 
for C3 crop species. 

More recently the photosynthetically active radiation has been used to 
estimate canopy assimilation rather than solar radiation because only the 
visible wavelengths are effective in photosynthesis. Furthermore, both 
COz uptake and light can be expressed meaningfully in molar units so 
that the light use efficiency is dimensionless, as an efficiency should be. 
Sometimes the absorbed radiation is used in Eq. (14.13). Since the ab- 
sorptivity of leaves is so high in the PAR band, there is little difference 
between absorbed and total PAR, but this is not the case for total solar 
radiation, since so much of the NIR is reflected. This is another reason to 
use PAR rather than solar. When the conversion efficiency is expressed 
as dry matter divided by intercepted radiation, some factors that have 
little to do with photosynthesis and light get included; for example, dark 
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respiration and the composition of dry matter (fraction of carbohydrates, 
proteins, or lipids). The most stable conversion efficiencies are likely to 
be mol C02 (mol photons)-'. Typical daily conversion efficiencies in 
these units are 0.01 to 0.03 mol C02 (mol photons)-'. This is sometimes 
referred to as canopy light use efficiency. The conversion efficiency ap- 
proach is used to estimate daily, monthly, or seasonal assimilation. One 
of the factors that is known to affect conversion efficiency (e) on a daily 
basis is the fraction of incident radiation that is diffuse versus solar beam; 
with diffuse radiation being more efficient. 

Monteith and others have pointed out that using accumulated dry matt- 
ter and intercepted radiation amounts to relating two variables that are 
accumulated sums. Summing any two sets of numbers, even randomnum- 
bers, induces a high correlation, similar to that shown in Fig. 14.4. The 
fact that we get nice straight lines is therefore not necessarily an indica- 
tion of a causal relationship between the two quantities. It is known from 
other information, though, that light and photosynthesis are causally re- 
lated, so this induced correlation may add, rather than detract from the 
model since it makes the model very robust. The real question is whether 
the model is useful for prediction of dry matter production. This depends 
on how conservative e is. A number of experiments have shown that e is 
very conservative in situations where water, nutrients, and temperature do 
not limit plant growth. Equation (14.13) is therefore useful for predicting 
maximum productivity. When stresses limit growth, it is often possible 
to quantify their effect either in terms of a reduction in conversion ef- 
ficiency, e, or a decrease in interception, fs. This allows experiments 
carried out under different conditions of light availability to be compared 
or normalized. 

The Monteith model focuses on light as the limiting substrate for 
photosynthesis. Another simple model can be derived by considering 
gas exchange. The net carbon assimilation for a leaf can be computed 
from: 

where gc is the conductance of the boundary layer and surface (stom- 
ata) for C02, Cca is the atmospheric C02 concentration (around 
350 pmoVmol) and Cci is the C02 concentration in the intercellular 
spaces of the leaf. The subscript n on the assimilation rate means the 
net assimilation rate. Wong, et al. (1979) found that Cci is maintained 
at a fairly constant value in light. Genotypes vary in the values they 
maintain, but the main variation is between C3 and C4 species. In C3 
species values around 280 pmol/mol are common, while in C4 the values 
are around 130 pmoVmo1. Photorespiration therefore maintains a much 
larger intercellular concentration in C3 leaves. 

Water vapor diffuses through the same stornatal pores as C02, so any 
assimilation is accompanied by transpiration. The rate of transpiration 
can be computed from Eq. (14.10), (with the As canceled). Taking the 
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ratio of assimilation to transpiration gives: 

Referring to Table 7.4 it can be seen that the ratio of gc/g, ranges from 
0.66 to 0.75 for diffusion and convection processes. Since part of the 
transport is by diffusion and part by convection we use a midrange value 
of 0.7 for the ratio. From Fig. 14.1 it can be seen that leaf temperature 
tends to be quite close to air temperature when stomata are open and 
leaves are in the sun. We could therefore approximate the vapor pressure 
difference between the leaf and the air by the vapor deficit of the air, D. 
Our simple photosynthesis model then becomes: 

where k = 0.7 pa(Cca - CCi). Tanner and Sinclair (1983) extended this 
model to apply to plant communities and showed that the only difference 
between the leaf and canopy model was the value of k used. 

Relationships like Eq. (14.16) were obtained over a century ago 
by researchers who correlated biomass production and transpiration of 
crops. The fact that dry environments (with high vapor deficits) pro- 
duce less biomass per unit transpiration than humid environments was 
also observed long before this equation was derived from gas exchange 
principles. The theory therefore appears to fit the observations. 

Like Eq. (14.13), Eq. (14.16) applies to any leaf or canopy situation if 
the appropriate values for k and D are known. Equation (14.16) is more 
useful though if k is conservative and D is large enough so that ignor- 
ing the temperature difference between the leaves and the air does not 
cause too much error. Equation (14.16) is therefore not very useful under 
conditions of low light and high humidity. Fortunately, these are exactly 
the conditions for which Eq. (14.13) works well. The two equations are 
therefore somewhat complementary. Equation (14.16) implicitly includes 
light effects through the effect of radiation on E. 

Equation (14.16) is useful for a number of predictions without even 
doing computations. For example, it predicts that dry matter produc- 
tion cannot occur unless there is transpiration. The amount of production 
which will occur per unit of water used is determined by k, which is 
related to the intercellular C02 concentration in leaves. Species with C4 
metabolism maintain much lower internal COz concentration than C3, so 
they produce more dry matter per unit water than do C3. Improvements 
in water use efficiency (dry matter produced per unit of water used) in 
a species must come mainly from decreased intercellular C02 concen- 
tration. This obviously has a limit and dreams of genetically engineering 
plants that will grow in the desert and produce dry matter without us- 
ing water are obviously conjured up without much understanding of the 
physics of photosynthesis. 
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14.8 Biochemical Models for Assimilation 
To investigate more detailed questions related to response of assimilation 
to the leaf environment a more detailed model is needed that addresses 
temperature sensitivity of enzymes and limitations by light, C02, and the 
export of products of photosynthesis. The model we present here is from 
Collatz et al. (1991). The model considers the gross assimilation rate A, 
in units of pmol m-2 s-I, to be the minimum of three potential capacities: 

where JE is the light-limited assimilation rate, Jc is the Rubisco-limited 
rate, and J, is the rate imposed by sucrose synthesis. 

The light-limited assimilation rate can be computed from: 

where a, is the absorptivity of the leaf for PAR, e, is the maximum quan- 
tum efficiency (maximum number of C02 molecules fixed per quantum of 
radiation absorbed), Q p  is the PAR photon flux density incident on the leaf 
(pmol m-2 s-I), and Cci is the intercellular C02 concentration. The light 
compensation point r* is the C02 concentration at which assimilation is 
zero. It is computed from: 

where Coo is the oxygen concentration in air (210000 pmol/mol) and 
t is a ratio describing the partitioning of RuBP to the carboxylase or 
oxygenase reactions of Rubisco. In C3 species, oxygen competes with 
C02 and t is a measure of this competition. 

The Rubisco-limited assimilation rate is computed from: 

where V, is the maximum Rubisco capacity per unit leaf area (pmol 
m-2 s -1 ), Kc is the Michaelis constant for C02 fixation, and KO is 

the Michaelis constant for oxygen inhibition. Equation (14.20) is a 
rectangular hyperbola, typical of enzyme catalyzed reactions. At low 
concentrations of CO2, Jc shows a linear increase with increasing concen- 
tration, but when Cci is large, Jc becomes almost constant, approaching 
the value Vm. The oxygen concentration influences the initial slope of 
the relationship, but not the h a 1  value reached at high COz concentra- 
tions. At normal atmospheric C02 concentrations, decreasing the oxygen 
concentration around a C3 leaf dramatically increases the photosynthetic 
rate in light, but at high C02 levels the effect of oxygen concentration is 
negligible. 
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The final constraint is the one imposed by the export and use of 
the products of photosynthesis. As in any chemical reaction, when the 
concentration of products builds up, the reaction slows. Sucrose synthe- 
sis is considered the most likely rate limiting step. The sucrose-limited 
assimilation rate is assumed, by Collatz et al. (1991) to be just 

Equation (14.17) implies a sharp transition from one rate limiting process 
to another. In reality there is a more gradual transition, with some col- 
imitation when two rates are nearly equal. This colimitation is modeled 
empirically using quadratic functions. The minimum of JE and Jc is first 
computed from: 

where 8 represents a number between 0 and 1 that controls the abruptness 
of the transition from one limitation to the other. Measurements tend 
to give values of 8 around 0.95. The second limitation is imposed by 
computing the minimum of J p  (from Eq. (14.22) with J,: 

where /3 performs the same function in Eq. (14.23) that 8 did in 
Eq. (14.22). A typical value for B is 0.98, indicating a sharp transition 
between J p  and J,. 

The net assimilation rate is the gross assimilation given by Eq. (14.23) 
minus the respiration rate for the leaf: 

Collatz, et al. (1991) compute Rd as 0.015 Vm. 
The temperature response ofphotosynthesis is modeled by considering 

the temperature dependence of the model parameters. Five parameters 
need adjustment for temperature: Kc, z, KO, Vm, and Rd. The first three 
temperature adjustments take the same form, namely: 

where k represents the value of any of the parameters at leaf temperature 
TL, k25 is the value of that parameter at 25" C, and q is the tempera- 
ture coefficient for that parameter. In addition to this adjustment, Vm and 
Rd need a high temperature cutoff. The temperature response for these 
parameters is: 
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and 

The denominator reduces the value of Vm,25 or Rd,25 rapidly at 
temperatures above 41 or 55" C, respectively. 

It is, of course, not practical to use this photosynthesis model for 
hand calculations. It can be a simple matter, though, to make a computer 
program which solves these equations. Table 14.1 gives values for the 
model parameters, as supplied by Collatz et al. (1991). 

Figure 14.5 shows the temperature response predicted by the model, 
Fig. 14.6 shows the light response, and Fig. 14.7 shows the CO2 response. 
It is important to note, in the table and in all of the figures, that our values 
are per unit total leaf surface area. Collatz et al. (1991) and most other 
researchers compute photosynthesis on a per unit projected leaf area basis. 
Our values are therefore half those typically found in the photosynthesis 
literature. 

14.9 Control of Stomatal Conductance 

We already mentioned the observation of Wong et al. (1979), who found 
that stomata tend to open or close to maintain a constant internal C02 
concentration. Stomata must therefore be sensitive to changes in environ- 
mental C02 concentration, opening when it decreases and closing when 
it increases. Others have observed that stomata also open or close in re- 
sponse to the vapor deficit of the air (Lange, et al. 1971). High vapor 

TABLE 14.1. Values of parameters and constants used in the photosyn- 
thesis model. The values of b, Rd, and Vm are half those given by Collatz 
et al. (1991) because we assume the surface area of the leaf to be the total 
surface area, rather than the projected area. 

Symbol Value Units Temp. Description 
Coef. 

b 0.003 mol rn-' s-' intercept, B-B model 
em 0.08 moVmol maximum quantum efficiency 
K c  300 pmol/mol 0.074 Michaelis constant for C02 
KO 300 mmoVmol 0.01 8 inhibition constant for 0 2  

m 5.6 slope parameter for B-B model 
Rd 1.5 pmol rn-' s-I 0.088 day respiration 
v", 100 pmol m-2 s-' 0.088 Rubisco capacity 
CC, 340 pmol/mol ambient C02 mole fraction 
COO 210 mmoVmol oxygen mole fraction 
a~ 0.8 leaf absorptivity for PAR 
k? 0.98 colimitation factor 
t 2.6 mmoVpmol -0.056 C02/02 specificity ratio 
0 0.95 colimitation factor 
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FIGURE 14.5. Temperature response of photosynthesis at three PAR levels for Cci 
ymol mol-' . 
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FIGURE 14.6. Photosynthesis as a function of PAR at three leaf temperatures. 
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FIGURE 14.7. Photosynthesis as a function of C02 concentration at three light 
levels. 

deficits (low humidities) tend to close stomata. It is not, of course, the 
external environment that provides the direct response, but the internal 
environment of the leaf. This, in turn, is controlled by external environ- 
ment as well as the transpiration and assimilation rate of the leaf. Collatz 
et al. (1991) were able to combine all of these effects into an empirical 
model that looks relatively simple: 

where h, and Ccs are the humidity and C02 concentration at the leaf 
surface, A, is the net assimilation rate, and m and b are constants de- 
termined from gas exchange studies. While Eq. (14.28) looks simple, it 
is in reality quite complex because the entire photosynthesis model de- 
termines the value of A,; the air vapor pressure, leaf temperature, and 
transpiration rate determine the value of the surface humidity, and the 
ambient CO;! concentration, assimilation rate, and boundary layer con- 
ductance determine Ccs. Since conductance determines assimilation rate, 
and assimilation rate determines conductance, Eqs. (14.14), (14.24), and 
(14.28) (with all of the equations that go into them) must be solved si- 
multaneously to determine the assimilation of the leaf. Again, this is not 
something that can be done easily by hand, but can be done with a com- 
puter. The interesting thing is that, after all of the work of solving these 
equations, the results are almost identical to those shown in Figs. 14.5 to 
14.7. Using the values in Table 14.1, the internal C02 concentration is 
controlled at 250 pmollmol. 
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Optimum Leaf Form 
It is clear from Fig. 14.5 that there exists an optimum temperature for 
photosynthesis which appears to vary with irradiance. The optimum tem- 
perature varies from species to species and can even depend on the 
temperature under which the leaf is grown. For the particular leaf rep- 
resented by Fig. 14.5 the optimum temperature is a little above 20" C 
at low irradiance and increases to about 30" C at high irradiance. From 
the analysis we did earlier in this chapter, we know that leaf temper- 
ature is, to some extent, under the control of the plant. Narrow leaves 
tend to stay closer to air temperature than broad leaves and leaves with 
high evaporation rates can maintain temperatures well below air temper- 
ature when vapor deficits are high. Large leaves with high radiation loads 
and low evaporation rates can reach temperatures considerably above air 
temperature. With this range of possibilities available, the question arises 
whether plants evolve leaf shapes and responses to stress which maximize 
photosynthesis. In environments where water is a limiting resource for 
production, one could also ask whether plant design or behavior adapts 
to maximize production per unit water use, or water use efficiency. 

We can not know whether plants maximize photosynthesis or water 
use efficiency, but we can investigate what size and orientation of leaves 
would give maximum photosynthesis or water use efficiency, and then see 
if leaves in that environment have that size or orientation. A few cases 
appear to be straightforward. The alpine cushion plants, which would be 
below the optimum temperature for photosynthesis most of the time ifthey 
were at air temperature, clearly benefit by radiative heating of the leaves. 
Their growth habit appears to be an adaptation to maximize temperature in 
the sun. Desert perennials, which maintain leaves throughout the summer 
with limited water supplies, in environments where air temperature is at 
or above the photosynthetic optimum, would benefit from minimizing 
daytime leaf temperature. Their small leaves appear to be an adaptation 
to keep leaves as close to air temperature as possible without evaporating 
large amounts of water. A number of these adaptations, and their energetic 
consequences, have been analyzed by Taylor (1975). At least for extreme 
environments, species native to those environments appear to evolve leaf 
shapes that tend to be optimum. 

Leaf orientation is another interesting topic for investigation. Leaves 
of many species droop or roll when they are water stressed. This can 
reduce the radiation load on the leaf, decreasing leaf temperature and 
transpiration. On the other hand, leaves of sunflower, peanut, and many 
other species follow the sun, tending to increase the irradiance of the leaf. 
One interesting species, in this regard, is the prairie compass plant (Jurik 
et al., 1990). This plant grows in hot, dry environments. Leaves grow so 
that the flat surfaces of leaf blades face east-west to maximize radiation 
interception in the morning and evening and minimize it during midday. 
Vapor deficits are maximum during midday and leaf temperatures are 
higher than optimum for photosynthesis. The main assimilation times 
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for compass grass are during morning and evening hours when vapor 
deficits are low, so the carbon gain per unit water loss is therefore high. 
Carbon gain was shown to be similar for all leaf orientations, but water 
use efficiency is higher for their preferred orientation. 

The interactions between plants and their environment can be ex- 
tremely complex. We have shown that even the behavior of the leaf 
temperature and transpiration models is not always intuitive or straight- 
forward. When these are combined with the leaf photosynthesis model, 
and all of the interactions are in place, the result can be quite complex and 
difficult to predict. This appears, however, to be a fruitful area for research. 
The results of the work are not only useful for understanding plant adap- 
tations to particular environments, but also to design agricultural plants 
for optimum production in particular environments. 
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Problems 

14.1. When T, is 30" C, air vapor pressure is 1 kPa, and wind speed is 
2 mls, find the temperature of a 3 cm wide amphistomatous leaf 
with stomata1 conductance on each side of 0.3 mol md2 s-I, when 
absorbed radiation is Rabs = 730 w/m2. 

14.2. Find reference crop evapotranspiration on a clear day with total 
solar radiation of St = 825 w/m2, T, = 30" C, u = 3.5 mls, and 
h, = 0.3. Assume the albedo of the reference crop is 0.2. 

14.3. Use Eq. (14.16) to compare dry matter production of crops in arid 
and humid environments A typical value of k for C3 crops is 
O.OO5 kPa if assimilation is in kg dry mass per m2 and transpiration is 
in kg water per m2. Assume that the humid and arid locations both 
have average maximum temperatures of 27" C, but the average mini- 
mum temperatures of the humid and arid locations are 20°C and 
10" C, respectively. Using the maximum and minimum temperatures, 
estimate the average maximum vapor deficit for each location. 
The D in Eq. (14.16) is the average daytime vapor deficit, which is 
around 0.7 times the maximum deficit. Assume 500mm (500 kg/m2) 
of water is transpired for growing the crop in each location. How 
much dry matter could be produced in each? For a given invest- 
ment in water, is it most cost effective to irrigate crops in humid or 
arid environments? 

14.4. How would reducing the wind speed by a factor of two affect leaf 
temperature compared to doubling the leaf size? 

14.5. Under what conditions would you expect to find leaf temperature 
near to air temperature? 

14.6. Under what conditions of wind, radiation, air temperature, and hu- 
midity would you expect the leaf temperature to depart most from 
the air temperature in a positive direction (leaf hotter than the air) 
and negative direction (leaf cooler than the air)? 
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In Ch. 14 plant canopies are treated as big leaves. We did not wony 
about their structure or the details of how the leaves make up the canopy, 
we just assumed that we could find a canopy conductance for vapor and 
boundary layer conductances for heat and vapor. Combining these with 
the absorbed radiation and soil heat flux densities allowed us to compute 
canopy temperatures and transpiration rates. We even estimated carbon 
assimilation rates by knowing transpiration rate or light interception. 

In this chapter we look in more detail at the light environment of 
plant canopies. Without knowing how the light is distributed on leaves 
within the canopy we could not use detailed photosynthesis models like 
the last one presented in Ch. 14 to estimate canopy photosynthesis, but 
a study of the light environment of plant stands is useful for many other 
purposes as well. In this chapter we show how to compute the fraction 
of radiation intercepted by a canopy and the fraction transmitted to the 
soil. These are important for computing assimilation using simple models 
like Eq. (14.13), as well as for partitioning potential evapotranspiration 
between evaporation (from soil) and transpiration (from leaves). We also 
show how to compute the change in spectral composition of light as it 
is transmitted and reflected by the canopy. These spectral changes have 
application in predicting responses of organs or organisms which are 
triggered by a specific ratio of red to far-red radiation and in radiometric 
remote sensing. 

15.1 Leaf Area Index and Light Transmission 
Through Canopies 

We use the cumulative hemi-surface area index (HSAI) L to measure the 
optical pathlength of radiation from the top of the canopy downward. 
The hemi-surface area index is one-half the surface area of leaves per 
unit ground area. For thin, flat leaves, the hemi-surface area index is the 
same as the leaf area index (LAI), which is the silhouette (one-sided) 
area of leaves per unit ground surface area. For more complicated shapes, 
like conifer needles or branches, the hemi-surface area index is not equal 
to the silhouette leaf area index. For example, conifer needles shaped 
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like cylinders have a hemi-surface area index equal to n / 2  times the 
silhouette leaf area index. Silhouette or "projected" leaf area index is 
not consistent in canopies with leaves that have complex shapes because 
the details of the projection are important and often not recorded. For 
example, some needles are shaped like hemicylinders and are twisted 
along their length a variable number of rotations, and others may have a 
cross section like 114 of a cylinder and lay flat on a planimeter with more 
than one orientation. Throughout this chapter we consider flat leaves and 
use the terms HSAI and LA1 interchangeably. At the top of the canopy, 
L = 0. With increasing depth into the canopy, L increases and is equal 
to the total leaf area index of the canopy L, below the canopy. For a given 
canopy there exists a relationship between L and the physical distance 
one would measure in the canopy, but the relationship is not necessarily 
a simple one. 

Much can be learned about the role of canopy architecture in deter- 
mining the relation between leaf radiative properties and canopy radiative 
properties by considering canopies to consist of a statistical distribution 
of flat leaves. You may recall from Ch. 11 that leaves typically have 
absorptivities of about 0.5 (Table 11.4) and canopies typically have ab- 
sorptivities of about 0.8 (Table 11.2); this difference is related to the 
architecture of the canopy. Separating the effects of leaf spectral prop- 
erties from the effect of canopy architecture is important because most 
leaves have similar reflectance and transmittance spectra, even though 
they depend on wavelength, but canopy architecture can vary widely with 
species, environmental condition, and time. 

An idealized canopy can be constructed above some horizontal ground 
area of size A by randomly placing horizontal, black (leaves that do not 
reflect or transmit radiation) leaves each of area a above the ground. If 
one black leaf is randomly placed over the area A the probability that 
a random ray will hit this leaf is a/A.  The fraction of the area A that 
would be in shadow by a uniform light beam at the zenith is also a/A.  
If this incident beam of light is thought of as being composed of a great 
many very small rays of light, then a fraction a /A  of these tiny rays 
would intersect the leaf and the fraction 1 - a / A  would pass by the 
leaf unintercepted. If a second leaf is placed randomly over the area A 
the probability that a light ray will not be intercepted by either leaf is 
(1 - u/A)', because the placement of the second leaf is independent of 
the placement of the first leaf. If N leaves are placed randomly above the 
area A then the probability that none of the leaves will intercept a light ray 
is (1 - U I A ) ~ .  This describes a binomial distribution and accommodates 
the fact that many of the shadows of these horizontal leaves will overlap 
on the ground surface, A. The quantity (1 - a/A)  can be thought of as 
the transmittance of light from the zenith through this canopy of black, 
horizontal, randomly-distributed leaves. Alternatively, (1 - u / A ) ~  can be 
considered to be the fraction of the ground area illuminated by the incident 
beam. At this point, it is important to recognize that these probabilities 
apply to both transmittances and area fractions. Binomial probability 
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distributions are not particularly easy to work with, so we make another 
assumption to simplify the math; namely, that the area of a single leaf 
a is much smaller than the ground area, A. This certainly is reasonable 
for many realistic examples. If the mathematical limit of (1 - u / A ) ~  is 
taken as a/A + 0, then (1 - u / A ) ~  -- exp(-NalA), where Na/A 
is the leaf area index. Essentially this amounts to replacing the binomial 
distribution with the Poisson distribution. Interestingly, this result for 
horizontal leaves is independent of the incident angle of the light, because 
the shadow of a horizontal leaf cast onto a horizontal plane is the area of 
the leaf no matter what direction the light comes from. 

A quick look at vegetation reveals that leaves are almost never oriented 
entirely horizontally; they have a distribution of orientations. However, 
the horizontal shadows of black leaves can always be treated as "horizon- 
tal leaves" no matter what the leaf orientation. Although these shadows 
have a range of sizes, they all are random relative to each other and small 
compared to the area, A. This is all that is required for exponential ex- 
tinction to hold. Therefore, no matter what the orientation distribution of 
leaves, the fraction of the leaf HSAI that is projected onto the horizontal 
plane from a particular zenith angle I,+ can be calculated: We refer to 
this fraction as the extinction coefficient, Kb(I,+). One can also think of 
Kb (I,+) as the mean beam flux density on an average illuminated leaf in the 
canopy divided by the beam flux density on the horizontal plane above the 
canopy. Clearly, for a canopy of perfectly horizontal leaves, Kb(I,+) = 1. 
The azimuth angle of the incident radiation may also be important in 
estimating Kb(I,+), but we deal only with canopies that have leaves sy- 
metrically distributed about the azimuth (compass directions), which is 
a good assumption for almost all canopies. The extinction coefficient 
is therefore assumed independent of solar azimuth. Later we calculate 
Kb(I,+) for various leaf-angle distributions and remove the assumption of 
"black" leaves. 

If flat leaves in a canopy of leaf area index L, are randomly distributed 
in space, then the fraction tb(I,+) of incident beam radiation from zenith 
angle I,+ that penetrates the canopy is 

rb(I,+) = exp(-Kb(llr)Lr) (15.1) 

where Kb(I,+) is the canopy extinction coefficient just described. When 
leaves are clumped (not randomly distributed), canopy transmission can 
often still be approximated by an exponential function of L,, but L, is 
multiplied by a clumping factor Q to account for the fact that leaves 
are less efficient in covering the ground than when they are randomly 
distributed. Row crops with leaves clumped in the rows may intercept 
only 70 to 80 percent of the radiation they would if their leaves were 
randomly distributed in space. 

The fraction of incident beam radiation intercepted by the canopy 
is 1 - -cb(I,+). This fraction is available for scattering, transpiration, 
and for photosynthesis. The fraction of beam radiation that is not in- 
tercepted by the canopy (rb(I,+)) reaches the soil surface and is available 
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for evaporating water from the soil. A simple way to partition potential 
evapotranspiration (PET) between potential transpiration and potential 
soil evaporation uses t. Potential transpiration is 1 - t times PET, and 
potential evaporation is t times PET. A canopy that covers the ground rea- 
sonably well has a leaf area index of perhaps three. If K (@) = 0.6, then, 
from Eq. (15. I), t (@) = exp(-0.6 x 3) = 0.17; so 17 percent of the 
radiation is intercepted by the soil surface and 83 percent is intercepted by 
the canopy. If both canopy and soil surface were wet, so that evapotranspi- 
ration were at the potential rate, then 83 percent of the evapotranspiration 
would come from the canopy and 17 percent from the soil. 

15.2 Detailed Models of Light Interception by 
Canopies 

Our purpose here is to find equations that allow us to account for the 
major variations in PAR and near-infrared (NIR) fluxes on leaves in a 
canopy. The most obvious variations result from shading of some leaves 
by others. We therefore consider two classes of leaves, those that are 
shaded, and those that are sunlit. Average PAR or NIR flux densities for 
each of these classes can be derived. More detailed models subdivide each 
of these classes to account for the leaf angle distribution and position in 
the canopy of leaves, but we do not consider those now. Goudriaan (1988) 
shows how to derive a model with more radiation classes. 

The calculation of an extinction coefficient requires calculating the 
area of an average projection from some direction @ onto the horizontal, 
and this is not an easy thing, except by some geometrical reasoning. If 
all of the leaves in a canopy were vertical, but with random azimuthal 
orientations, then the distribution function for leaf area in the canopy 
would be the same as the distribution function for area on the vertical 
surface of a vertical cylinder. The ratio of the area projected onto the 
horizontal from the direction @ to the hemi-surface area of a cylinder 
(length LC and diameter D) is the extinction coefficient and it is given by 

where @ is the zenith angle of the sun. Similarly, a crop might have 
leaves with leaf inclination angles similar to the distribution of angles on 
the surface of a sphere. Taking the ratio of the area of the projection of 
a sphere (radius r) onto a horizontal surface to the hemi-surface area of 
the sphere gives 

A canopy with a spherical leaf angle distribution does not need to look 
like a ball. Imagine cutting the surface of a sphere into many little pieces, 
then moving these pieces about the volume occupied by the canopy 
while maintaining the zenith and azimuth orientations of each piece. The 
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resulting canopy would have a spherical angle distribution. There would 
be more vertical area than horizontal area, because more of the surface 
area of a sphere is vertical than horizontal, but leaves of all inclinations 
would be present in the canopy. A spherical angle distribution is a good 
approximation to real plant canopies. 

An extinction coefficient for a conical leaf distribution could also be 
derived, but the most useful distribution is ellipsoidal. The ellipsoidal 
distribution generalizes the spherical, but allows the sphere to be flattened 
or elongated. The ratio of projected area to hemi-surface area for an 
ellipsoid is (Campbell, 1986): 

Here, the parameter x is the ratio of average projected areas of canopy 
elements on horizontal and vertical surfaces. For a spherical leaf angle 
distribution, x = 1 ; for a vertical distribution, x = 0; and for a horizontal 
leaf canopy, x approaches infinity. Equation (1 5.4) therefore gives all of 
the simple Kb 'S and all of the ones in between. Figure 15.1 shows leaf 
angle density for three different values of x. The equation for these 
distributions is given by Campbell (1990). As mentioned, the spherical 
distribution has more vertical than horizontal area, but spreads the area 
fairly uniformly among almost all angles. As x increases the peak shifts 
toward horizontal angles and as x decreases the peak shifts toward verti- 
cal angles. If we were to plot the horizontal and vertical distributions on 
Fig. 15.1, they would be infinitesimally narrow, and infinitely tall spikes 
(called Dirac delta functions) at 0 and 90". 

0 10 20 30 40 50 60 70 80 90 

angle-deg 

FIGURE 15.1. Inclination angle density for three canopies. The larger x is, the 
more horizontal the leaves are. 
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Beam Zenith Angle (degrees) 

FIGURE 15.2. The extinction coefficient Kbe($) as a function of zenith angle for 
x values representing various leaf angle distributions. 

Figure 15.2 shows extinction coefficients as a function of beam zenith 
angle for a range of x values. Note that extinction in horizontal canopies 
has no zenith angle dependence, but for all other canopies, zenith angles 
below about 60" have extinction coefficients below unity, while at zenith 
angles greater than 60°, the extinction coefficient is greater than unity. 

By using these values of extinction coefficient in Eq. (15.1), we can 
show how canopy structure (in terms of leaf angle distribution) influences 
radiation transmission and interception. This is done in Fig. 15.3 for a 
canopy with a leaf area index of one. Since the extinction coefficient 
has no angle dependence in a horizontal-leaf canopy, the transmission 
does not depend on zenith angle for horizontal canopies. When L, = 1, 
and Kbe(@)  = 1, Eq. (15.1) gives exp(- 1) = 0.37. All other canopies 
transmit more and intercept less radiation at small zenith angles than 
do horizontal canopies. At large zenith angles, canopies with inclined 
leaves intercept more radiation than do canopies with horizontal leaves. 
A canopy with completely vertical elements would intercept no radiation 
if the solar beam were directly overhead at 0". Obviously no real canopy 
has absolutely vertical leaves, but this limiting case can help to understand 
and verify the equations. 

Measured values of x for a number of crops are given in Table 15.1. It 
can be seen from the table that natural canopies tend to be more horizon- 
tal than vertical and that the spherical distribution (x = 1) approximates 
many of the canopies. If no information is available about the angle distri- 
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FIGURE 15.3. Fraction of the incident solar beam reaching the ground below a 
canopy with LA1 = 1, for different leaf angle distributions. 

bution of leaves in the canopy, it is often assumed to be spherical. Values 
of x are not particularly intuitive for understanding leaf orientation. Mean 
leaf inclination angle is more easily understood. The mean leaf inclina- 
tion angle can be approximated as COS-'(K~,(O)) using Eq. (15.4). The 
mean leaf inclination angles are therefore about 73", 60°, and 34" for x 
values of 0.5, 1.0, and 3.0. This approximation of mean leaf inclination 

TABLE 15.1. Values of the leaf angle distribution parameter 
x for various crop canopies (from Campbell and van Evert, 
1994) 

Crop x Crop x 

Ryegrass 
Maize 
Rye 
Wheat 
Barley 
Timothy 
Sorghum 
Lucerne 
Hybrid swede 
Sugar beet 
Rape 

Cucumber 
Tobacco 
Potato 
Horse Bean 
Sunflower 
White clover 
Strawberry 
Soybean 
Maize 
J. artichoke 
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angle is not exact but it is close. For example, the spherical leaf angle 
distribution has a true mean leaf inclination angle of 57", rather than 60". 

The fraction of beam radiation that is transmitted through the canopy 
without interception tb(@) is given by Eq. (15.1) with Kbe(@) from 
Eq. (15.4) (or one of the simpler equations for Kb(@)  if the distribu- 
tion is horizontal, vertical, or spherical) using the appropriate sun zenith 
angle (Eq. (1 1.1)). 

15.3 Transmission of Diffuse Radiation 

The diffuse radiation comes from all directions, and is attenuated differ- 
ently from beam radiation, which comes from just one direction. Diffuse 
radiation can be thought of as many beams and a diffuse transmission 
coefficient for the canopy can be calculated from 

t d  = 2 tb(@) sin@ COS @ d$f. r2 (15.5) 

For horizontal leaves, t b  (@) is not dependent on +, and so t b  = td, but for 
the other leaf angle distributions tb (+) does depend on @ and the integra- 
tion in Eq. (1 5.5) must be carried out numerically. When the integration is 
done numerically, it is found that t d  does not decrease exponentially with 
L, as it does for beam radiation (except for horizontal leaves). In order 
to obtain a useful approximation for models, an exponential equation can 
be fit to the values obtained and allow Kd, the extinction coefficient for 
black leaves in diffuse radiation, to vary with leaf area index. Figure 15.4 
shows the result based on a numerical integration of Eq. (15.5), assuming 

1 

Leaf Area Index 

FIGURE 15.4. Apparent extinction coefficient for diffuse radiation in canopies 
differing in leaf angle distribution. 
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a uniform overcast sky (no zenith angle dependence of sky radiance). For 
horizontal leaves, Kd = 1, but for a spherical canopy, with L, = 3, Kd 
is around 0.7. This is an important point which we return to later. 

Note that diffuse radiation, unlike beam radiation fiom the sun, is 
distributed relatively uniformly over all leaves with various orientations 
for a particular layer in the canopy. Thus the diffuse flux density incident 
on a leaf at some depth L in the canopy is the same as the diffuse flux 
density estimated on the horizontal at the same depth using Eq. (15.5) 
and the diffuse flux density above the canopy. 

15.4 Light Scattering in Canopies 

The leaves in plant canopies are not black, of course, and do transmit 
and reflect radiation. Goudriaan (1977) has shown that the transmission 
and reflection of radiation when the leaves are not assumed black can 
still be approximated using an exponential model (Eq. (15.1)), but with 
a modification to K. If the absorptivity of leaves for radiation is a ,  then 
the total beam radiation (direct and down scattered) transmitted through 
the canopy to depth L is 

It can be seen that when a = 1 (black leaves) this equation is the same 
as Eq. (1 5.1) and when a! is small radiation will be attenuated minimally. 
The transmission of light through the leaves therefore gives an additional 
amount of radiation under the canopy. Equation (15.6) is an approxima- 
tion, and Goudriaan (1977) has shown (his Table 5, p. 27) that Eq. (15.6) 
works well for a range of sun zenith angles, canopy architectures, and 
leaf absorptivity values. For a canopy with a spherical leaf angle distri- 
bution, Eq. (15.6) works well for sun zenith angles less than 65". The 
transmission of diffuse radiation by the canopy is predicted by a similar 
equation, but with Kd as the extinction coefficient. Typical values for a! 
are a!, = 0.8 for PAR and a, = 0.2 for NIR radiation. For total solar 
radiation, absorptivity is the mean of the values for PAR and NIR, so 
cr, = 0.5. 

15.5 Reflection of Light by Plant Canopies 

For a canopy of randomly located, horizontally oriented leaves with a 
LA1 so large that the soil has negligible effect on radiation reflected from 
the canopy, the canopy hemispherical reflection coefficient, pgy, is given 
by 

where a is the leaf absorptivity. This means that for a dense canopy of 
horizontal leaves, in the PAR (a = 0.8), p:,, = 0.056; in the NIR 
(a = 0.2), p{,,, = 0.38; and in the solar (a = 0.5), pgcpy = 0.17. 
This canopy reflection coefficient for solar radiation actually is not a 
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reliable estimate. Equation (15.6) accommodates multiple scattering in 
the canopy and is only appropriate where reflectivity and transmissivity 
are constant with wavelength. If the reflection coefficient is averaged over 
a wavelength band where spectral reflectivity (and transmissivity) varies 
considerably with wavelength, (as it does for leaves in the visible and near- 
infrared portions of the solar spectrum) then Eq. (1 5.7) is unreliable. This 
can best be understood with a simple example; shown as Example 15.1. 

Example 15.1. Estimate the transmission of solar radiation through two 
filters, stacked on top of each other, using the following two methods. 
1. Assume an average transmission for the solar wavelength band (ts), 
2. Use visible (VIS) and near-infrared (NIR) transmissions separately. 

Assume 112 of the solar radiation is NIR and 112 is VIS, the visible 
transmittance ( tv)  is 0.0, and near-infrared transmittance (zN) is 0.9. 

Solution. 
1. using ts: 

ts  = 0.5(0) + 0.5(0.9) = 0.45 

t (2  filters) = tsts = 0.45 x 0.45 = 0.20. 

2. Using tv and tN with tv = 0 and tN = 0.9: 
visible 

t (2  filters) = 0.0 x 0.0 = 0.0 

near-infrared 

t(2filters) = 0.9 x 0.9 = 0.81 

solar 

t (2  filters) = 0.5(0.) + 0.5(0.81) = 0.40. 

Therefore averaging multiple transmissions or reflections, as happens in 
plant canopies, over wavelength bands with different spectral properties 
causes errors; in this example a factor of two. 

From Example 15.1, the visible and near-infrared wavelength bands 
should be treated separately because their spectral properties are so dif- 
ferent. Thus a better estimate of the solar albedo is given by P&,~ = 
0.5(0.056) + 0.5(0.38) = 0.22, a value 29 percent larger than is ob- 
tained by substituting the average solar absorptivity into Eq. (15.7). This 
is one of the reasons that solar radiation must be divided into visible 
and near-infrared wavelength bands in environmental biophysics. Fortu- 
nately about one-half of the irradiance is in each band so approximate 
partitioning is simple. 
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If the leaves are not horizontal, Goudriaan (1988) suggests that the 
beam reflection coefficient for a deep canopy can be approximated from 

The reflection coefficient for diffuse radiation can be approximated by 
substituting Kd for Khe (@) in Eq. (1 5.8). 

If the canopy is not dense, then the effect of the soil may be 
significant and the canopy reflection coefficient for beam irradiance 
becomes (Monteith and Unsworth, 1990) 

Neglecting second order terms like (p&, (@)12 and pi,,,, (@)ps  results 
in the following simplified equation: 

Equation (15.10) is a good approximation to Eq. (15.9) in the PAR, but 
in the NIR, relative discrepancies can approach five percent. The diffuse 
forms of Eqs. (15.9) and (15.10) have Kbe(@)  replaced by Kd and are 
represented by pd,,, . ps is soil reflectance. 

15.6 Transmission of Radiation by Sparse 
Canopies-Soil Reflectance Effects 

For a canopy with a high LAI, the transmission of beam radiation (in- 
cluding its scattered component) as a function of depth L in the canopy 
is given by Eq. (15.6). If the canopy is not dense, and the LAI is low, then 
radiation can be reflected from the soil and re-reflected from the leaves 
to enhance the downwelling radiation stream. Monteith and Unsworth 
(1990), give the following equation for determining the flux density of 
radiation under the canopy: 

If the second order terms are again neglected, then Eq. (15.11) simplifies 
to Eq. (15.6), and this amounts to assuming that the ratio of upwelling to 
downwelling radiation below L, for a deep canopy is equivalent to the soil 
reflectance for a finite canopy. In the PAR wavelength band, Eq. (15.6) 
may be a reasonable approximation to Eq. (15.1 I), depending on p,, but 
in the NIR, relative descrepancies of ten percent or more can occur. The 
beam radiation absorbed by the canopy can be approximated with 
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while the beam radiation intercepted by the canopy is 

Clearly the absorptivity of the canopy depends on wavelength but the 
interception does not depend on wavelength. 

15.7 Daily Integration 

Equation (14.13) requires estimates of the fraction of radiation intercepted 
by the canopy, averaged over whole days. Fuchs et al. (1976) suggested 
that the interception of beam and diffuse radiation, averaged over whole 
days, can be approximated by the intercepted function for diffuse radia- 
tion because the sun traverses the whole sky over the period of the day. 
Tests with detailed models have shown this to be correct. Therefore the 
average transmission of canopies can be modelled over whole days using 
Eq. (1 5.6), with Kbe (+) replaced by K d  (from Fig. 15.4). ' 

Based on these observations, the daily fractional interception can be 
computed from 

Absorption of PAR is about equal to interception, while absorption of 
total solar radiation is about 80 percent of interception (Campbell and 
van Evert, 1994). 

15.8 Calculating the Flux Density of Radiation 
on Leaves in a Canopy 

The equations we have just derived can be used to compute the flux density 
of radiation on leaves within the canopy. Knowing the flux density on 
leaves is important for the purpose of computing photosynthesis and for 
calculating the radiation viewed by a remote sensor. 

Let Qob be the flux density of beam radiation on a horizontal surface 
at the top of the canopy and Qod be the flux density of diffuse radiation on 
the horizontal above the canopy. At a depth L in the canopy, three different 
flux densities can be calculated: the total beam, Q b t ( + )  (unintercepted 
beam plus down scattered beam); beam, Q b ( + )  (unintercepted beam) 
and the diffuse flux, Qd.  These are given by 

Qd = Tdr Qod. (15.17) 

Here, Tbr(@)  and t d t  are given by Eq. (15.6) with the appropriate K for 
beam or diffuse radiation, and rb (+) = exp(- Kbe ($) L )  . 

At depth L in the canopy some leaves are sunlit and some leaves are 
in the shade. The flux density on a horizontal surface at the position of 
a sunlit leaf is Qbt (+) + Qd. The flux density on the leaves themselves 
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will vary depending on their orientation, but the mean flux density on the 
sunlit leaves can be shown to be 

where Qsc is the flux density of down-scattered radiation from the solar 
beam. The flux density on shaded leaves is the diffuse flux plus the down- 
scattered flux from the solar beam: 

The down-scattered radiation is the difference between Qbt(@) and 
Qb(@): 

The next problem is to know what fraction of the leaf area at depth L is 
sunlit. The probability of finding a sunlit leaf area index in thickness S L 
at depth L in the canopy is the product of the probability that a ray will 
penetrate to depth L and the probability that it will be intercepted in the 
layer SL, divided by Kbe(@) (the ratio of projections of leaf area on a 
horizontal surface to actual leaf area). If L* is used to represent the sunlit 
leaf area index, then 

In the limit as 6 L becomes small, 6 L* = SL exp(- Kbe(@) L). The 
fraction fsl(@) of sunlit leaves at depth L is SL*/SL, so 

The fraction of shaded leaves is fsh (@) = 1 - fsl (@). If the LA1 of the 
entire canopy is Lt, then the sunlit LA1 of the whole canopy LT is 

and the shaded LA1 is L, - LT. 

15.9 Calculating Canopy Assimilation from Leaf 
Assimilation 

Several methods are available for calculating canopy photosynthetic rate 
from leaf photosynthetic rate based on the distribution of light over leaves, 
including methods that consider additional factors such as wind and 
humidity. Norman (1992) compared various simple methods for estimat- 
ing canopy assimilation from leaf assimilation. The most robust method 
seems to divide the canopy into sunlit and shaded leaf classes, calculate 
the assimilation rate for representative members of each class, and sum 
the two contributions according to the fraction of leaf area in each class. 
One reason this method works so well is that it accommodates the nonlin- 
ear response of leaf assimilation to light. Light assimilation responses of 



The Light Environment of Plant Canopies 

leaves (see Fig. 14.6) can vary with depth in the canopy and this variation 
can be accommodated by partitioning the canopy into several layers and 
estimating the sunlit and shaded leaf fractions in each layer. Usually this 
is not necessary and a single, representative light assimilation response 
curve can be used for the entire canopy. Obviously most of the sunlit 
leaves are near the top of the canopy and most of the shaded leaves are 
near the bottom; therefore, one minor adjustment might be to use slightly 
different light assimilation response curves for sunlit and shaded leaves. 
In our example we use a single light assimilation response relation for all 
the leaves in the canopy. 

Example 15.2. Estimate the canopy photosynthetic rate at 10°C (light 
assimilation curve in Fig. 14.6) for a canopy with a spherical leaf angle 
distribution and hemi-surface area index of 3.0, incident PAR above the 
canopy on the horizontal of Qob = 2000 pmol photons m-2 s-' with 
80 percent as beam and 20 percent as difise radiation, sun zenith angle 
$r = 40°, and leaf absorptivity a = 0.8. 

Solution. The canopy net assimilation rate An,cpy is the sum of contri- 
butions of sunlit and shaded leaves. These two contributions are added 
separately because sunlit leaves will be light saturated while shaded leaves 
will be in the linear portion of the light assimilation relation; thus canopy 
assimilation is not proportional to average light levels: 

where An,leaf is the pmol CO2 m-2 (leaf hemi-surface area) s-', and 
An,cpy is the ~ m o l  C02 m-2 (ground area) s-', and, of course, L, and LT 
are (leaf hemi-surface area)(ground area)-'. 

First the average PAR incident on shaded leaves needs to be estimated. 
At the top of the canopy shaded leaves receive the diffuse radiation from 
the sky, 400 pmol photons m-2 (ground area) s-I . At the bottom of the 
canopy QSh = Qd + Q,,. From Fig. 15.4, Kd = 0.72, so: 

Qd = Tdt Qod = Qod exp(-&KdLt) 

= 400 exP(-&-ii~0.72x3.0) 

= 58 pmol photons m-2 (ground area)s-I. 

The diffuse PAR on a horizontal plane is 400 at the top and 58 pmol 
photons m-2 (ground area) s-I at the bottom. For diffuse radiation, the 
flux density on the horizontal is assumed the same as the flux density on a 
leaf if the leaf area is expressed on a hemi-surface area basis (leaf HSA). 
Thus top shaded leaves have a diffuse illumination of 400 and bottom 
leaves receive 58 pmol photons mV2 (leaf hemi-surface area) s-' . These 
two values could be averaged to obtain 229 pmol photons md2 (leaf hemi- 
surface area) s-', but it is known that the attenuation is exponential and 
not linear, so a more appropriate average is an exponentially-weighted 
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average: 

pmol 
= 177 

m2(leaf hemi-surface area) s ' 

The scattered beam radiation is zero at the top ofthe canopy and is given by 
Qs, = Qbt (@) - Qb(@) at the bottom. If the beam extinction coefficient 
is 

then 

= 278 pmol photons m-2 (ground area) s-' 

= 226 pmol photons m-2 (ground area) s-' 

Q,, = 278 - 226 = 52 pmol photons m-2 (ground area)sP' . 

Therefore the average scattered illumination on leaves is (52 + 0)/2 = 
26 pmol photons m-2 (leaf hemi-surface area) s-' . The PAR flux density 
absorbed by shaded leaves is 

pmol photons 
= 162 

m2(leaf hemi-surface area) s 

where the overbar denotes an average over the depth of the canopy. The 
PAR flux density absorbed by sunlit leaves is given by 

pmol photons 
= 997 

m2(leaf hemi-surface area) s ' 

The sunlit LA1 (LT) and shaded LAI (L, - LT) are given by 

m2(leaf hemi-surface area) 
= 1.32 

m2 (ground area) 

L, - LT = 3.0 - 1.32 = 1.68 
m2(leaf hemi-surface area) 

m2 (ground area) 

The leaf assimilation rates can be obtained from Fig. 14.6 using 12sh for 
shaded leaves and for sunlit leaves. The leaf assimilation rates in Fig. 
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14.6 are in units of pmol CO2 m-2(leaf surface area) s-', and the units 
needed are pmol C02 m-2(leaf hemi-surface area) s-'. Therefore 

pmol CO2 AZ& = 11 
m2(leaf surface area) s 

2m2 (leaf surface area) 
X 

m2(leaf hemi-surface area) 

A sun pm01 C02 
n.leaf = 22 m2(leaf hemi-surface area) ,s ' 

Similarily, at 16212 = 81 pmol photons m-2 (leaf surface area) s-' 

pmol CO2 
A:::$ = 6 

m2(leaf hemi-surface area) s ' 

Therefore the canopy assimilation is given by 

pmol CO2 
A, = 22 

m2(leaf hemi-surface area) s 

m2(leaf hemi-surface area) 
x 1.32 

m2 (ground area) 
pmol C02 

+ m2(leaf hemi-surface area) s 

m2(leaf hemi-surface area) 
x 1.68 

m2 (ground area) 
pmol CO2 

= 29.0 + 10.1 = 39.1 
m2 (ground area) s ' 

The approach used in Example 15.2 to scale leaf assimilation to canopy 
assimilation accommodates the nonlinearity in the 10°C light assimila- 
tion curve in Fig. 14.6. If we had ignored the fact that the 10°C light 
assimilation curve is not a straight line and used an average absorbed 
PAR for the entire canopy to scale up the leaf assimilation rate, how large 
would the error be? The average absorbed PAR for the canopy is the 
mean of sunlit and shaded absorbed PAR weighted by the leaf area of 
each: 

- 
- Q,lLT + =(L, - L:) 997 x 1.32 + 162 x 1.68 
Q = - - 

Lt 3.0 
p mol photons 

= 529 
m2 (leaf hemi-surface area) s ' 

From Fig. 14.6, the leaf assimilation rate corresponding to the average 
absorbed PAR is 20 pmol C02 m-2(leaf hemi-surface area) s-', so the 
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canopy assimilation rate is given by 

pmol C02 
An'cpy " 20 m2(leaf hemi-surface area) s 

m2(leaf hemi-surface area) 
x 3 

m2 (ground area) 
pmol C02 

S 60 
m2(ground area) s ' 

This is 54 percent larger than the sunlithhaded method in Example 
15.2. This value of 60 pmol C02 m-2(ground area) s-' is approxi- 
mately the canopy photosynthetic rate that would occur if the canopy 
were illuminated with entirely diffuse irradiance at 2000 pmol pho- 
tons m-2(ground area) s-'. Thus a diffuse irradiance of about 1300 
pmol photons m-2(gr~und area) s-' would result in about the same 
canopy photosynthetic rate (39 pmol CO2 m-2 (ground area) s-') as 
2000 pmol photons m-2(ground area) s-' with 80 percent beam and 20 
percent diffuse: This means that diffuse irradiance is more efficient for 
photosynthesis than beam irradiance. 

Light assimilation responses are not always as nonlinear as the 10°C 
curve in Fig. 14.6; for example, the 30°C curve in Fig. 14.6. Comparing 
the canopy assimilation prediction from the sunlithhaded method with 
the average-APAR method results in 39 pmol C02 mV2 (ground area) 
s-' for both methods; this occurs because of the linearity of the 30°C 
curve. Considering the greater leaf assimilation rate at 30°C from Fig. 
14.6, it may be surprising to find the canopy assimilation rates for 10 and 
30°C are nearly equal. This occurs because leaves at 30°C have higher 
photosynthetic rates on sunlit leaves and lower rates on shaded leaves, be- 
cause of the larger dark respiration. Essentially the higher maximum leaf 
photosynthetic rate comes at a higher dark respiration cost. Furthermore, 
the canopy architecture limits the fraction of leaves that can be sunlit. 

Leaf stomatal conductance can be scaled to a canopy conductance 
by using the same method as outlined above for photosynthetic rates 
if stomatal conductances for sunlit and shaded leaves are known. Using 
stomatal conductances appropriate for the leaf assimilation rates plotted in 
Fig. 14.6 under humid atmospheric conditions, the canopy conductance 
for Example 15.2 can be estimated from an equation like Eq. (15.24) 
to be 0.5(1.32) + 0.2(1.68) = 1.0 mol water m-2(ground area) s-'. 
Because sunlit LAI approaches a maximum as LA1 increases (LT has 
a maximum of about 1.5 for high LA1 canopies with @ = 40") and 
the mean shaded stomatal conductance decreases as LAI increases, this 
sunlitlshaded approach clearly shows why canopy conductances tend to 
reach maximum values that might be expected to be related to sunlit leaf 
area index. 
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15.10 Remote Sensing of Canopy Cover and 
IPAR 

Remote sensing is a name associated with inferring characteristics of 
surfaces from measurements of radiance. In environmental biophysics, 
remote sensing usually refers to the interpretation of radiometric mea- 
surements made above soil-vegetation systems from towers, aircraft, or 
satellites. A more general term is indirect measurement, which refers to 
any measurement made without directly contacting an object. Techni- 
cally, our eyes indirectly sense the environment around us so an absurd 
interpretation might infer that all information obtained with our eyes (e.g., 
reading a ruler) could be considered remote sensing; however, this is not 
what we mean. In environmental biophysics, some examples of remote 
sensing include the following. 

1. Infrared thermometer measurements of soil surface temperature. 
2. Measuring soil or canopy roughness using the backscattered radiation 

from a laser (these systems are called LIDAR). 
3. Estimating the water content of the top 5 cm layer of soil using passive 

microwave measurements of surface temperature and emissivity. 
4. Estimating total forest-canopy water content to infer vegetation 

biomass using RADAR. 
5. Inferring canopy cover, leaf area index, or intercepted photosyntheti- 

cally active radiation (IPAR) from measurements of visible (VIS) and 
near-infrared (NIR) reflected radiance. 

Another indirect measurement that is common in environmental bio- 
physics, but not generally referred to as remote sensing, is the indirect 
measurement of canopy architecture. This is discussed briefly in a later 
section of this chapter. 

Some of the fundamental characteristics of remote sensing data can be 
understood using knowledge of canopy architecture by considering the re- 
lation between canopy cover, IPAR, and reflected VIS and NIR radiation. 
In previous sections we discussed the penetration of radiation through 
canopies, the reflection of radiation from canopies and the distribution of 
radiation over the surface of leaves. Although all this is relevant to remote 
sensing, a second consideration also is required; that is, the portion and 
characteristics of the canopy and soil that occupy the field-of-view (FOV) 
of the sensor. As mentioned in Ch. 10, bidirectional reflectance factors 
(BRF) involve two directions; the direction of the source (usually the sun) 
and the direction of the receiver (a sensor). To simplify the analysis that 
follows, we do not consider finite solid angles of view, but only consider 
particular directions as though the radiation were composed of parallel 
rays all from that direction. Essentially this amounts to using data from 
a narrow FOV sensor that is calibrated to read out the flux density em- 
hating from the target surface by making the output proportional to the 
radiance times the FOV of the sensor. 
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For our purposes, the bidirectional reflectance factor (BRF) for a 
surface can be defined as follows: 

flux density leaving the horizontal surface viewed by a sensor 
BRF = 

flux density incident on the horizontal surface 

The flux density incident on the surface usually is measured by point- 
ing the sensor at a reference surface (exposed to the same illumination 
conditions as the target surface) that is as close to a perfectly-reflecting, 
Lambertian surface as possible. Clearly the BRF may be different for 
various wavelength bands such as the visible ( E m V )  and near-infrared 
(BRFN), and the view of the sensor may be occupied by sunlit leaves, 
shaded leaves, and soil (both sunlit and shaded). 

If the BRF for soils and vegetation were isotropic; that is, the surfaces 
responded like Lambertian surfaces, then the magnitude of the BRF would 
be constant for all view angles. However the BRF for canopies can vary 
by more than a factor of three with view angle for a given wavelength 
band. Detailed models of canopy BRFs are complex and beyond the 
scope of this book. Even analytical models such as Kuusk (1995) are 
quite complicated. However, Irons et al. (1992) have represented the soil 
BRF by small spheres on a flat Lambertian plane, where the shadows cast 
by the spheres onto the horizontal background influence the radiation 
viewed by the sensor. The BRF distributions for canopies and soils have 
a characteristic shape with BRF values being highest when the sun is 
directly behind the sensor and low when the sensor view is directed toward 
the sun. Walthall et al. (1985) present a simple, empirical equation to fit 
BRF distributions as a function of view zenith and view azimuth for a 
single sun zenith angle: 

where +V is the view zenith angle, AAZ is the difference between the 
azimuth angle of the sensor and the azimuth angle of the sun (AAZ = 0 
when the sun is directly behind the viewer so the view is away from 
the direction of the sun), and a, b, and c are empirical coefficients that 
change with canopy architecture, wavelength, and sun zenith angle. For 
example, Walthall et al. (1985) give the coefficients for a soybean canopy 
withLAI= 2.6 and + = 61" as VIS a = 1.49, b = 0.32, and c = 3.44, 
with NIR a = 9.09, b = 7.62, and c = 46.8 (BRF in % and angles in 
radians). Clearly the BRF is largest when the middle term of Eq. (15.25) 
is positive and smallest when the middle term is negative. 

In this chapter we are interested in understanding the relation between 
BRF and canopy architecture: This can be accomplished with simplified 
equations by limiting the discussion to a sensor viewing from near nadir 
(or within about 10" of directly overhead). This is the most common 
direction used in remote sensing because atmospheric contamination is 
minimal and interpretation of nadir data is most straightforward. In the 
following sections, @ refers to the sun zenith angle, and since the sun 
zenith angle is rarely zero, we use 0 to refer to the nadir view angle so 
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that Kbe(@) refers to the extinction coefficient for beam radiation and 
Kbe(0) refers to the extinction from the nadir view direction. Kbe(0) is 
never used in the following equations to refer to the direction of the sun. 
Although similar equations are used to describe sun and view effects, the 
context should always be obvious. 

From Eq. (15.22), the fraction of leaves at depth L in a canopy that 
is sunlit is given by exp(- Kbe(@)L). If the sensor is placed at the same 
zenith and azimuth angles as the sun, and for discussion purposes assume 
the sensor is so small that it casts a negligibly small shadow, then the 
sensor would view exactly these sunlit leaves. Thus the same exponential 
expression can be used to estimate sunlit-leaf-area fraction as to estimate 
the fraction of leaves in a layer than can be viewed from the same direction. 
The special case of identical sun and view directions is referred to as the 
canopy hot spot, because the canopy appears brighter from this direction 
then any other direction; all the leaves being sunlit from this direction. 
For this special case, sunlit leaves and shaded leaves cannot be assumed 
to be independent because both sun and view directions share the same 
path through the canopy. As the sensor is moved off the direction of the 
sun, shaded leaves occupy an increasing fraction of the sensor FOV until 
the view path and the path of the sun rays are independent. The decrease 
in radiance as a function of the increasing angle between the direction of 
the sensor and the sun direction depends on LAI, leaf angle distribution, 
leaf size, sun zenith angle, and canopy height (Kuusk, 1995). Typically 
the hot spot varies from a few degrees wide to a few tens of degrees wide 
depending on conditions. The equations that follow, which pertain to 
nadir viewing only, do not consider the hot spot. Hot spot considerations 
generally would represent a minor refinement for latitudes where the sun 
zenith angle is rarely less than 20". 

A remote sensor that is directed toward a canopysoil systemmay view 
both vegetation and soil. For a canopy of randomly positioned leaves, the 
fraction of the sensor view that is occupied by soil is exp(- Kbe(0) L,) SO 

that the fraction of view occupied by vegetation is 1 - exp(- Kbe(0) Lr). 
The vegetation portion of the view consists of both sunlit and shaded 
leaves. The fraction of leaves at a depth L that is sunlit with the sun at 
zenith angle @ is given by Eq. (15.22). Therefore the fraction of leaves 
at a depth L that is sunlit and can be viewed from nadir is given by the 
product: exp(- Kbe (0)L) exp(-Kbe (@)L). If the product of these two 
exponentials is integrated over the depth of the canopy L, the sunlit leaf 
area index is obtained that is in the view of the sensor, L*, : 

The fraction of the sensor view occupied by sunlit leaves is given by the 
projection of L*, in the direction of the sensor or fV,sl = L*, Kbe(0). 
The fraction of sensor view occupied by shaded leaves is the difference 
between the view fraction occupied by vegetation (1 - exp(- Kbe(0) L,)) 
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and the fraction occupied by sunlit leaves: 

fv,sh = 1 - exp(-Kbe(O)Lr) - L$Kbe(O)- (15.27) 

The flux density detected by the sensor, QView($), is the sum of the 
contributions of sunlit leaves, shaded leaves, and soil weighted by the 
view fractions each occupies: 

Qview($> = PQsl($>L; Kbe(O> 

+ PZ [I - exp(-Kbe(0)Lr) - L ; ~ ( o ) ]  (15.28) 

+ + Qd) exp(-Kbe(O)Lt) 

where p and p, are the leaf and soil reflectivity in the wavelength band 
of interest. The BRF for a particular wavelength band, for example, the 
visible, is given by 

The unique feature of leaves that permits remote sensing of canopy 
bidirectional reflectance to be useful for estimating canopy biophysical 
characteristics is the strong contrast between absorption in the visible 
and scattering in the near-infrared with a sharp transition near 700 nm 
(Fig. 1 1.5). Usually soils have higher reflectivity in the visible than dense 
canopies, lower reflectivities in the near-infrared than dense canopies, and 
only slightly higher reflectivity in the near-infrared than visible; therefore 
as canopy cover increases, the visible reflectance decreases, near-infrared 
reflectance increases, and the ratio, given by 

increases (SR is called the simple ratio vegetation index). Another form 
of the ratio is the normalized difference vegetation index (NDVI) given 
by 

BRFN - BRFv 
NDVI = 

BRFN + BRFv 
where - 1 5 NDVI 5 1. These vegetation indices in the form of ratios 
are widely used in remote sensing because uncertainties that affect both 
wavelength bands similarly tend to cancel out. Numerous other indices 
have been developed to minimize the iduence of atmospheric or soil 
contamination and the advantage gained from these variations over SR 
and NDVI appears to be minor but consistent. NDVI may not be zero 
for zero vegetation cover because soil reflectances in the two bands may 
not be equal or because of atmospheric effects (VIS is scattered more 
than NIR so NDVI can be negative from satellite observations if no at- 
mospheric corrections are done); therefore, an adjusted NDVI (NDVI*) 
has been proposed by Carlson et al. (1995): 

NDVI - NDVIi, 
NDVI* = (15.32) 

NDVI,,, - NDVI&, 
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where NDVImi, is the NDVI with no vegetation and NDVI,, is the NDVI 
with dense vegetation. Carlson, et al. (1995) set NDVI* equal to the frac- 
tion of vegetative cover, and this is a reasonable approximation, especially 
when solar zenith angles are small. Clearly NDVI* varies from zero to 
one over the range of vegetation cover and accounts for the observation 
that NDVI increases more rapidly than the fraction of vegetation cover 
as vegetation density increases. 

Remote sensing from satellites has the possibility of sampling the 
entire land surface of the earth daily at a 1 km spatial resolution on 
the ground and a spatial resolution of 10 m, or less with less frequent 
temporal sampling. Because of this phenomenal spatial sampling, much 
effort has been expended to determine what biophysical quantities are 
most closely related to the remote sensing observations. An examination 
of Eq. (1 5.28) provides some useful insights here. Remember that optical 
remote sensing from satellites is possible only under relatively clear-sky 
conditions when atmospheric transparency is high, because satellites need 
to view the surface with minimal contamination from the atmosphere. 
From Eq. (15.28), when L, is small, reflection from the soil dominates 
(third term on the right of Eq. (15.28)). As L, increases, the dominant 
term in Eq. (15.28) becomes the scattering of intercepted near-infrared 
beam radiation (first term on the right of Eq. (1 5.28)), which also happens 
to be closely related to the intercepted PAR radiation. Table 15.2 contains 
values of the three terms in Eq. (15.28), NDVI, NDVI*, and IPAR and 
the fraction of canopy cover (f,) assuming 

fc = ex~(-Kbe(O)Lr). (15.33) 

Clearly NDVI* is most closely related to IPAR and fraction vegetative 
cover (fc) when @ is small (30"). The relation between NDVI* and IPAR 
is likely to be better at other solar zenith angles because both NDVI* 
and IPAR change but fc is fixed with @. The close relation between 
NDVI* and IPAR occurs because intercepted solar radiation dominates 
both variables; interception in the visible portion of the solar spectrum 
dominates IPAR and interception in the NIR portion of the solar spectrum 
dominates NDVI*. 

The effects of leaf angle and sun zenith angle can be seen from Table 
15.3. Clearly NDVI* is a reasonable predictor of fraction of IPAR for a 
modest range of conditions. Since IPAR is closely related to vegetation 
productivity potential (Eq. (14.13) with St replaced by IPAR and con- 
version efficiency e adjusted accordingly [e is about doubled]), remote 
sensing has something significant to contribute to global vegetation stud- 
ies. The robustness of the relation between NDVI* and fraction of IPAR 
is further established by studies that have shown NDVI* to be related to 
the fraction of IPAR associated with the green vegetation in canopies that 
have both green and dead foliage. 

Example 15.3. Compare the nadir, near-infrared BRF (BRFN) for a 
canopy with a spherical leaf angle distribution (x  = 1) with the hemi- 



Remote Sensing of Canopy Cover and IPAR 269 

TABLE 15.2. Variation of some quantities related to remote sensing as a function of 
several canopy biophysical characteristics. The wavelengths used for remote sensing 
calculations are about 650 nm and 750 nm. The three terms from Eq. (15.28) are 
for the NIR wavelength band. The canopy is assumed to have a spherical leaf angle 
distribution and I& = 30'. All fluxes are in units of W m-2. 

L, NIR NIR 
Term 1 Term 2 
(W m-2) (W m-2) 

0 0 0 
0.1 9 0 
0.3 25 1 
0.6 47 3 
1.0 68 9 
1.5 86 17 
2.0 98 25 
4.0 113 50 
6.0 113 57 

NIR 
Term3 NDVI NDVI* IPAR 
(W m-2) (W m-2) 
75 0.20 0 0 
70 0.27 0.01 28 
6 1 0.39 0.06 78 
50 0.54 0.20 143 
38 0.68 0.41 212 
28 0.78 0.59 280 
20 0.84 0.72 331 

6 0.91 0.90 441 
2 0.92 0.92 479 

Fraction 
IPAR 
0 
0.06 
0.16 
0.29 
0.42 
0.56 
0.66 
0.88 
0.96 

Fraction 
Cover 
0 
0.06 
0.14 
0.26 
0.39 
0.53 
0.63 
0.86 
0.95 

spherical near-infrared reflectance for a sun zenith angle I& = 60°, 
Assume a leaf reflectivity and transmissivity of 0.48 so a~ = 0.04, 
soil reflectance p, = 0.15, and L, = 2.0. The near-infrared part of the 
incident solar radiation is Qob = 230 W m-2 and Qod = 20 W mP2. 

Solution. The canopy BRFN is estimated from Eq. (15.28) so the three 
terms in that equation need to be evaluated. The following quantities are 

TABLE 15.3. Relation between NDVI* and IPAR fraction (fIPAR) 
for two sun zenith angles and two leaf angle distributions. 
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needed: 

1 - exp [-(0.5 + 1.0)2.0] 
L*, = = 0.633 

0.5 + 1.0 

Term 1 = 0.48 x 310 x 0.633 x 0.5 = 47 W m-2 

Term 2 = Pe,h [I - exp(-Kb,(O)Lr) - L*, K ~ ~ ( o ) ]  
- 
Qst, = E + z =  1 8 + 6 2 = 8 0 ~ m - ~  

Term 2 = 0.48 x 80 [l - exp(-0.5 x 2.0) - 0.633 x 0.51 

= 12 W mP2 

Term 3 = ~s(Qbr + Qd) exp(-Kbe(O)Lt) 

Qbt(60) = 230 exp -z/i104 X 1.0 X 2.0 = 230 X 0.67 [ 
= 154 w mP2 

I 
Term 3 = 0.15 x (154 + 15) exp(-0.5 x 2.0) = 9 W m-2. 

Therefore QView(60) = 47 + 12 + 9 = 68 W m-2 so that BRFN = 
- = 0.27. If we had used the more precise Eq. (15.1 1) instead of 
Eq. (15.6), then BRFN = 0.32 instead of 0.27. 
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The hemispherical reflectance can be estimated from Eq. (1 5.10) for 
both beam and diffise components. For the beam component: 

H - 1 - r n  - 0.8 - = 0.667 (Eq. (15.7)) 
- 1 + ,mi3 - 1.2 

* - 2 x 1.0 
Pb,cpy - 1 .o + 1 .o (0.667) = 0.667 (Eq. (15.8)) 

Therefore the hemispherical reflectance of the canopy is 

Qob~b ,cpy  (60) + Qod~d,cpy 
PCPY(6O) = 

Qob + Qod 

- - 230 x 0.435 + 20 x 0.344 
= 0.43. 

250 
If we had used the more precise Eq. (15.9) instead of Eq. (15. lo), then 
pcpy(60) = 0.48 instead of 0.43. 

The reason BWN is lower than pcpy (60) in the near-infrared is that 
the nadir-viewing sensor views deeper into the canopy than the sun pen- 
etrates and thus the nadir BRFN is lower by 37 percent. This indicates 
the undesirability of using hemispherical reflectances to make inferences 
about remote sensing with narrow FOV sensors. 

15.1 1 Remote Sensing and Canopy Temperature 

Aerodynamic surface temperature is a key variable in the partitioning 
of net radiation into sensible and latent heat fluxes, as shown in Ch. 14, 
particularly in Eq. (14.8). Since radiometric surface temperature is a quan- 
tity that can be measured from satellites over the globe on kilometer 
spatial scales, numerous attempts have been made to use these remotely- 
sensed radiometric temperatures to monitor the partitioning of sensible 
and latent heat fluxes. The magnitude of this challenge is apparent from 
examining Eq. (14.8); obviously many variables can affect aerodynamic 
surface temperature, and the additional variables involved in the rela- 
tion between radiometric and aerodynamic temperatures are not even 
included in Eq. (14.8). Although radiometric temperature may be avail- 
able globally, most of the other variables that affect surface temperature 
are not. 



The Light Environment of Plant Canopies 

The sensible heat flux from the vegetation.soi1 system is closely related 
to surface aerodynamic temperature by 

where gHa is the aerodynamic conductance or canopy boundary-layer 
conductance given by Eq. (14.9) and T, is the air temperature. The appar- 
ent simplicity of Eq. (15.34) is deceptive. Assuming the information is 
available on a continental basis to estimate gHa, and this is no minor task 
because vegetation height, cover, and wind speed are required (remote 
sensing of NDVI may help here), three major challenges remain in trying 
to use radiometric temperature to estimate sensible heat flux: 

1. The radiometric temperature and aerodynamic temperature are not the 
same and usually differ by 1 to 5" C. 

2. The near-surface air temperature is not known on the same spatial scale 
as radiometric temperature and can vary by 5" C or more depending 
on the temperature of the underlying surface. 

3. Atmospheric corrections and uncertainties in surface emissivity as- 
sociated with satellite-borne surface radiometric temperatures have 
uncertainties of 1 to 3" C. 

Unfortunately, an uncertainty of 1" C in T,, - Ta can result in a 50 W 
m-* uncertainty in Hc,; a reasonable estimate of a tolerable maximum 
error. These challenges have not deterred scientists from searching for a 
solution. 

From this discussion a practical method for using satellite surface 
temperature measurements should have at least three qualities: 

1. Accommodate the difference between aerodynamic temperature and 
radiometric temperature. 

2. Not require a measurement of near-surface air temperature. 
3. Rely more on differences of surface temperature over time or space 

rather than absolute surface temperatures to minimize the influence of 
atmospheric corrections and uncertainties in surface emissivity. 

Anderson et al. (1997) have proposed such a method based on satellite 
observations from the Geosynchronous Orbiting Environmental Satellite 
(GOES), which is used primarily for observations of clouds and weather 
forecasting, having a ground spatial resolution of 4 km. In addition to the 
satellite temperature observations, they use ground measurements and 
balloon measurements from the weather forecasting network, a conti- 
nental vegetation classification map, and vegetation cover estimated with 
NDVI as described in the previous section. Uncertainties in sensible and 
latent heat of 30 to 50 W m-2 are achievable by this method. Practi- 
cal methods for using satellite observations of surface temperature to 
partition sensible and latent heat fluxes on a continental scale are most 
challenging. 
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15.1 2 Canopy Reflectivity (Emissivity) versus 
Leaf Reflectivity (Emissivity) 

Canopy reflectance is less than leaf reflectance because some of the ra- 
diation incident on leaves is transmitted deeper into the canopy where 
multiple interactions between the radiation and leaves causes additional 
absorption of the radiation. In effect, the canopy behaves as a trap for 
the radiation that is absorbed at the deeper depths in the canopy or at the 
soil surface. Either Eq. (15.7) or Eq. (15.8) can be used to illustrate this 
trapping phenomenon. For a deep canopy with PAR reflectivity pp = 0.1 
and PAR transmissivity t, = 0.1, the canopy reflectance pgy  = 0.056. 
In the thermal wavelength band, if the leaf emissivity E L  = 0.95, then the 
leaf reflectivity pL = 0.05 because t~ = 0. Using Eq. (1 5.7) for a deep 
canopy, p ~ , , ,  = 0.013 so the emissivity of this deep canopy is 0.987. 
Therefore a deep canopy is much closer to a blackbody than the leaves 
that make it up, and this explains why dense canopies often are assumed 
to have thermal emissivities of 0.99 even though leaves may have lower 
emissivities. 

15.1 3 Heterogeneous Canopies 

The simplified radiative exchange principles described in this chapter 
apply to vegetative canopies with leaves that are randomly distributed 
throughout the canopy space. Such canopies of randomly-positioned 
leaves are often referred to as homogeneous because the probability of 
finding a leaf anywhere in the canopy space is independent of horizontal 
position. When leaves are not randomly distributed in space, the canopy 
is considered heterogeneous; and the character of the heterogeneity can 
take many forms. We briefly consider two approaches to characterizing 
heterogeneity. 

1. Incorporate a clumping factor in the exponential extinction equations 
by replacing L with a (+) L; where (@) is the clumping factor that 
depends on zenith angle. 

2. Assume leaves to be randomly distributed within the confines of 
some appropriate geometric volumes, which we refer to as canopy 
envelopes, to represent widely-spaced tree crowns or crop rows. 

The clumping-factor approach has the advantage of making it possible 
to extend the previous equations for random canopies discussed earlier in 
this chapter to heterogeneous cases. For random canopies a(+) = 1, 
clumped foliage has a(+) < 1, and if foliage is more nearly mi- 
formly spaced, a(+) > l. For forest canopies, which tend to be the 
most strongly clumped, the dependence of clumping factor on + can be 
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approximated by the following equations: 

crown depth 
D = 

crown diameter 

where Q(0) is the clumping factor when the canopy is viewed from 
nadir or when looking up out of the canopy toward the zenith. Table 
15.4 contains some values of Q (0) for mature stands of several species. 

Using Eq. (1 5.35), sunlit leaf area index can be estimated for a clumped 
canopy by using Eq. (15.23) and replacing L, by Q(I++)L,, and diffise 
penetration estimated from the same substitution into Eq. (15.5). This 
approach is only approximate because the scattering equations imply a 
random distribution of leaves. 

With conifers, an additional level of clumping occurs because nee- 
dles are organized onto shoots. Typically the hemi-surface area of conifer 
shoots is about 1.3 to 2 times greater than the effective light-intercepting 
area of shoots. This shoot clumping factor is quite important when canopy 
architecture is estimated from indirect measurements such as those dis- 
cussed in the next section. Fassnacht et al. (1994) describe a method for 
estimating shoot clumping factors, and show that the difference in HSAI 
of fertilized and unfertilized pine stands is 30 percent; with 23 percent 
of this difference arising because fertilized shoots contain more needle 
surface area (more strongly clumped) and only seven percent difference 
arising from the increased light interception as determined by an indirect 
measurement of HSAI. 

The second approach to characterizing heterogeneous canopies re- 
quires knowing the dimensions of geometric canopy envelopes that 
contain all the foliage. This approach is most useful when the spatial dis- 
tribution of radiation beneath canopies is needed; such as in agroforestry 
where crop placement beneath tree crowns may be critical. If canopy en- 
velopes are assumed to be ellipsoids, such as Norman and Welles (1983) 
use, then a wide variety of crown shapes can be simulated. Given an ar- 

TABLE 15.4. Canopy clumping factors in the zenith direction for 
mature, healthy stands of several species. 

Species (Location) Hemi-Surface D n(0) 
Area Index 

Sugar Maple (Northern Wisconsin, U.S.A.) 5.5 - 1 0.95 
Oak (North Carolina, U.S.A.) 4 -- 1 0.9 
Aspen (Saskatchewan, Canada) 3.5 1.5-2 0.7 
Jack Pine (Saskatchewan, Canada) 2.5 3-4 0.5 
Black Spruce (Saskatchewan, Canada) 6.5 5-6 0.4 
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ray of canopy envelopes of known dimensions and locations, the beam 
transmittance t b (@,  A Z )  can be estimated from 

where p is the leaf area density (m2 of hemi-surface area per m3 canopy 
volume) and S(@,  A Z )  is the path length of light rays through the array 
of canopy envelopes between a particular point in a horizontal (at some 
depth in the canopy or at the soil surface) plane and the sun. 

Models of BRF in heterogeneous canopies are quite complicated and 
several approaches are described in detail in a book edited by Myneni 
and Ross (1 99 1). 

15.14 Indirect Sensing of Canopy Architecture 

A description of canopy architecture includes the position and orienta- 
tion distributions of leaves, branches, stems, flowers, and fruit. For most 
canopies, leaves dominate the canopy space so leaf area index, leaf angle 
distribution and some measure of clumping provide most of the informa- 
tion needed to describe canopy architecture. If we limit our discussion to 
canopies that approximate random positioning (most full-cover deciduous 
forests, grasslands and crops), then LA1 and x are the minimum essen- 
tial bits of information. Direct measurements of LA1 and x ,  by cutting 
plants and measuring leaf areas and angles are exceedingly laborious, so 
alternative measurement methods are desirable. Measurements of canopy 
gap fraction as a function of zenith angle can be used to obtain estimates 
of L, and Kbe(@) .  The strategy for using gap-fraction measurements to 
estimate canopy architecture is illustrated in Fig. 15.3. The gap fraction 
corresponds to the ordinate labeled transmission and the curves show the 
effect of leaf angle distribution ( x )  on transmission or gap fraction as a 
function of zenith angle for L, = 1. Given a number of measurements 
of gap fraction as a function of zenith angle, the curve that best fits the 
data can be chosen from numerous families of curves such as shown in 
Fig. 15.3 calculated for a range of LA1 values. The values of x and L, 
that best fit the data are assigned to the canopy where the gap-fraction 
measurements originated (Norman and Campbell, 1989). Although this 
method appears to be simple, the inversion procedure can be error prone 
and must be done carefully. Several commercial instruments that use this 
approach are available and have been discussed by Welles (1990). 

Heterogeneous (nonrandom) canopies require some additional in- 
formation about the characteristics of the heterogeneity. If canopy 
heterogeneity can be represented by the parameter S2 (@) in Eq. (15.35), 
then additional methods must be available for estimating S2 (@) (Chen, 
1996) beyond the measurements of gap fraction as a function of zenith 
angle. 

If heterogeneous canopies are composed of regular geometric shapes 
that contain foliage with large gaps between them, then the path length 
S(@,  A Z )  may be determined for the particular geometry (horizontal 
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cylinders for row crops or regularly spaced spheres for an orchard) and 
added to the inversion process (Welles, 1990). 

Indirect methods exist to estimate L, and x for a wide variety of ho- 
mogeneous and heterogeneous canopies including prairies, row crops, 
deciduous, and coniferous forests. Even though direct destructive mea- 
surements remain the reference standards for evaluating the accuracy of 
indirect methods, indirect measurements are faster, easier, and provide 
better spatial sampling. 

The indirect sensing of canopy architecture provides an example of 
how an improved understanding of the fundamentals of radiative ex- 
change in vegetation has provided a solution to the practical problem 
of characterizing plant canopies. 
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Problems 

15.1. A canopy with a spherical leaf angle distribution has a total leaf 
area index of three. Find the flux density of PAR on sunlit and on 
shaded leaves at the bottom of the canopy, and the fraction of the 
leaves which are sunlit and shaded. Assume a clear sky with a solar 
zenith angle of 30". 

15.2. Find the daily fractional transmission of PAR, NIR, and total solar 
radiation by a canopy with leaf area index, L, = 2. Assume that 
the leaf angle distribution is approximated by an ellipsoidal angle 
distribution with x = 2. 

15.3. If the ratio of red to far red radiation at the top of the canopy in 
problem 15.1 is 1, what is the ratio at the bottom of the canopy. 
Assume = 0.8 and cq,, ,d = 0.2. 
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15.4. Using Eq. (15.25) and the coefficient values in the text for VIS and 
NIR wavelength bands, plot the B W N  and B W v  as a function of 
view zenith angle for the principal plane of the sun between nadir 
and 60". The principal plane occurs when A A Z = 0 or A A Z = ~r . 
The horizontal axis of the graph will go from zenith view angles of 
-60" to +60° with positive view angles corresponding to A A Z = 0 
and negative zenith view angles corresponding to A A Z = n . (with 
LA1 = 2.6 and pk = 61"): for VIS a = 1.49, b = 0.32, and 
c = 3.44,andNIRa = 9.09, b = 7.62,andc = 46.8(BRFin% 
and angles in radians). Considering that A A Z = 0 corresponds to 
having the sun behind the sensor and AAZ = TC corresponds to the 
viewer looking toward the sun but downward at the canopy, explain 
the shape of this curve. 
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TABLE Al .  Temperature dependent properties of gases in air at 101 kPa. 
- 

P 
mol m-3 

44.6 
43.8 
43.0 
42.3 
41.6 
40.9 
40.2 
39.5 
38.9 
38.3 

Specific heat of air: c, = 29.3 J mol-I C-' 
Molecular mass of air: M, = 29 glmol. 
Molecular mass of water: Mw = 18 glmol. 

TABLE A2. Properties of water 

Specific heat of water 75.4 J mol-I c-I 

Latent heat of freezing 6.0 kJ mol-I 
Thermodynamic psycrometer constant at 20 C 0.000664 C-I 
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TABLE A3. Temperature dependence of saturation vapor pressure, 
slope of the vapor pressure function, black body emittance, radiative 
conductance, and clear sky emissivity. 

Temp Temp e,(T) 
K C kPa 

268.2 -5 0.422 
269.2 -4 0.455 
270.2 -3 0.490 
271.2 -2 0.528 
272.2 - 1 0.568 
273.2 0 0.61 1 
274.2 1 0.657 
275.2 2 0.706 
276.2 3 0.758 
277.2 4 0.813 
278.2 5 0.872 
279.2 6 0.935 
280.2 7 1.001 
281.2 8 1 .072 
282.2 9 1.147 
283.2 10 1.227 
284.2 11 1.312 
285.2 12 1.402 
286.2 13 1.497 
287.2 14 1.597 
288.2 15 1.704 
289.2 16 1.817 
290.2 17 1.936 
291.2 18 2.062 
292.2 19 2.196 
293.2 20 2.336 
294.2 21 2.485 
295.2 22 2.642 
296.2 23 2.808 
297.2 24 2.982 
298.2 25 3.166 
299.2 26 3.360 
300.2 27 3.564 
301.2 28 3.778 
302.2 29 4.004 
303.2 30 4.242 
304.2 3 1 4.492 
305.2 32 4.754 
306.2 33 5.030 
307.2 34 5.320 
308.2 35 5.624 
309.2 36 5.943 
310.2 37 6.278 

B gr 
W mol m-2 s-I 

293 0.149 
298 0.151 
302 0.153 
307 0.154 
31 1 0.156 
316 0.158 
320 0.160 
325 0.161 
330 0.163 
335 0.165 
339 0.167 
344 0.168 
349 0.170 
354 0.172 
359 0.174 
365 0.176 
370 0.178 
375 0.179 
380 0.181 
386 0.183 
391 0.185 
396 0.187 
402 0.189 
407 0.191 
413 0.193 
419 0.195 
425 0.197 
430 0.199 
436 0.201 
442 0.203 
448 0.205 
454 0.207 
460 0.209 
466 0.21 1 
473 0.214 
479 0.2 16 
485 0.218 
492 0.220 
498 0.222 
505 0.224 
51 1 0.227 
518 0.229 
525 0.23 1 

Continued on next page 
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TABLE A3. (continued) 

Temp 
K 

Temp 
C 

TABLE A4. Conversion factors 

Length 
Area 
Volume 
Density 
Pressure 
Heat 
Heat flux 
Heat flux density 

1 m = 100cm = 1OOOrnm 
lm2 = 10, 000cm2 = lo6 rnm2 
lm3 = 106cm3 = 1ogmm3 
1 Mg/m3 = lo3 kg/m-3 = 1 g/cmP3 
1 kPa = 10mb 
1 Joule = 0.2388 cal 
1 Watt = 0.8598 kcalhr 
1 W/m2 = 0.8598 kcal m-2 hr-I 
1 W/m2 = 1.433 x 10-3 cal cm-2 minP' 
1 W/m2 = 2.388 x cal cm-2 s-I 

TABLE AS. Physical constants 

Speed of light in vacuum 2.997925 x 108rn/s 
Avagadro constant 6.02252 x 1023mol-1 
Planck constant 6.6256 x Js 
Gas constant 8.3 143 J mol-' C-I 
Boltzmann constant 1.38054 x J C-' 
Stefan-Boltzrnann constant 5.6697 x 1 0-8 W m-2 C-4 





Index 

Absorptivity D 
definition, 152 
of enimal coats, 177, 178 

Albedo, see Reflectivity 
Airmass number, 158 
Air temperature 

avareging time for mean, 18 
fluctuations, 19 
profile, 16 

Annual damping depth, 115 
Atmospheric stability, 96, 97 
Atmospheric temperature, 15, 16 

Beer's law, see Bouguer's law 
Body area 

general formula, 209 
Body temperature of humans, 210 
Bouguer's law, 157, 158 
Buoyancy, 64,96 

Carbon dioxide, 37,235 
Climate space, 200-201 
Comfort, 220,221 
Conduction 

definition, 3 ,4  
of heat in animal coats, 194-197 

Convection, 99-101 
combined forced and free, 105 
definition, 3 ,4  

Conversion factors, 281 

Damping depth, 25, 1 15 
Darwin, Charles, 212 
Dew point temperature, 42 
Diabatic influence function, 97 
Diabatic profile correction, 96 
Diffusion 

coefficients, 88 
molecular, 88-90 
in soil, 114 
through stomates, 90 

Dimensionless groups, 100 
DuBois formula, 209 

Eddy correlation, 93 
Eddy diffusivity, 94 
Eddy size, 105 
Eddy viscosity, 94 
Einstein, Albert, 8 
Emissivity 

definition, 152 
of natural surfaces, 163 

Energy budget 
application, 200 
concept, 185, 186 

Energy budget equation, 185,200 
with sweating, 197, 198 

Energy exchange, 3 
Equivalent blackbody temperature, 

198-200 
Evapotranspiration, 225,233,234 



Extinction coefficient, 158 
of crop canopies, 249-252 

Fetch, 94 
Flick's diffusion law, 77,87 
First law of thermodynamics, 59 
Flux equations for a turbulent 

atmosphere, 94 
Flux measurement by eddy 

correlation, 93 
Fourier's heat low, 77 
Free convection, 93 
Friction velocity, 68,94 

Gibbs free energy of water, 54 
Grashof number, 100 
Gravitational potential, see Water 

potential 
Gross photosynthesis of crop, 

see also Photosynthesis 

Heat flux equation, 79 
Heat storage in enimals, 186 
Heat stress index, 216,217 
Heat waves, 19 
Humidity, see Relative humidity 
Humid microenvironments, 50 
Hydraulic conductivity, 129 

Ideal gas law, 38 
Irradiance, 150 

Kirchhoff's law, 154 
Lambert's cosine law, 154 
Latent heat 

cutaneous, 199 
respiratory, 190 
transport, 4 
of vaporization, 37 

Leaf area index, 247,248 
Leaf temperature, 224-227 

Index 

Long-wave radiation, see 
Radiation, long-wave 

Looping plume, 64 

Mass Flux, equation for, 79 
Mass transport, 4 
Matric potential, see Water 

potential 
Metabolic rate 

active, 189, 190 
of animals, 189, 190 
basal, 189, 190 
of humans, 210 
of poikilotherms, 189 

Microclimate, 3 
Microenvironment, 3 

temperatures, 15 
Mie scattering, 161 
Momentum transport, 4,94 

Net photosynthesis of crops, 223, 
224 

Newton's law of viscosity, 77 
Nusselt number, 100 

Ohm's law, 79 
Operative temperature, 198, 199 
Optimum leaf form, 244,245 
Osmotic potential, see Water 

potential 

Penman equation, 225,233,234 
Penman transformation, 219,232 
Photon, 147 
Photon flux, 148 
Photosynthesis, 235-238,241, 

242 
in canopies, 259-263 

Physical constants, 281 
Plank's law, 159 
Plank's photon energy equation, 

147 



Index 

Prandtl number, 100 
Pressure potential, see Water 

potential 
Psychrometer constant, 44 

equation, 44 

Radiant emittance, 150, 162, 163 
of blackbody, 149, 162, 163 

Radiant flux, definition, 149 
Radiation 

absorbed by animals, 160 
attenuation of, 157, 158 
blackbody, 159 
budgets, 165 
diffuse, 167 
directional relations, 140 
exchange, 4 
frequency of, 147 
long-wave atmospheric, 161 
in nature, 150 
in plant canopies, 248 
spectral distribution, 159-162 

Rayleigh scattering, 161 
Reflectivity, 157, 172, 177 

definition, 152 
of soils and vegetation, 172 

Relative humidity, 42, 43 
Resistance 

to convective heat transfer, 
101, 105 

to convective mass transfer, 
101, 105 

thermal, of animal coats and 
tissue, 186-1 88 

Reynolds number, 100 
Roughness parameters, 61,68 

Schmidt number, 100 
Scintillation, 19 
Sensible heat flux, 5 
Short-wave radiation, see 

Radiation 
Soil 

diurnal damping depth, 25, 115 
heat flux equations, 113, 114 

heat flux at surface, 115 
heat storage, 1 13 
temperature, 113-1 18 
water potential, 129 

Solar declination, 168, 169 
Solar elevation angle, 168 
Solar radiation, see Radiation 
Speed of light, 281 
Stefan-Boltzman equation, 162 
Sunlit leaf area, 258,259 
Survival 

in cold, 211-213 
in heat, 215-219 

Sweat rate, 216, 217 

Temperature 
of air, 15-23 
of exhaled air, 191 
fluctuations, 18 
of soil, 15,23 

Temperature profile 
equation, 20 
diabatic correction, 96 

Thermal diffusivity, 
of soil, 114 

Thermal resistance 
of clothing, 196 
effect of wind on, 196 

Tierra del Fuego, 212 
Transient state, 201,202 
Transmissivity, 152 
Transpiration, 23 1-234 
Transport 

convective, 99-105 
diffusive, 88-90 
laws, 77,78 
radiative, 147-150 
turbulent, 63-67,93,94 

Turbulence 
characteristic, 69 
kinetic energy of, 96 
mechanical, 65 
production of, 64 
scales of, 64 
thermal, 64 

Turbulent transport, see 
Transport, turbulent 



Units, 9 
Vapor density 

ambient or air, 47 
at saturation, 40,41 
temperature dependence of, 
280,281 

Vapor diffusion, see also 
Resistance 

Vapor flux, equation for, 81 
Von Karrnan constant, 68 

Water 
balance of animals, 204 
liquid phase, 5&60 
properties, 279 
vapor flux, 81 
vapor pressure, 40 

Index 

Water potential 
of animal fluids, 55 
of blood, 57,58,60 
components, 55,56 
of fungi, 58,60 
in relation to gas phase, 58, 59 
of soil, 55, 129, 13 1 

Wet bulb temperature, 42-44 
Wien law, 160 
Wind 

effect on coat resistance, 196 
fluctuations, 66 
vector components, 65 
within crop canopies, 72,73 

Wind profile, 67 
diabatic correction, 96 

Zero plane displacement, 68 


